• 제목/요약/키워드: Synoptic pattern

검색결과 81건 처리시간 0.022초

Pattern Recognition of Meteorological fields Using Self-Organizing Map (SOM)

  • Nishiyama Koji;Endo Shinichi;Jinno Kenji
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.9-18
    • /
    • 2005
  • In order to systematically and visually understand well-known but qualitative and rotatively complicated relationships between synoptic fields in the BAIU season and heavy rainfall events in Japan, these synoptic fields were classified using the Self-Organizing Map (SOM) algorithm. This algorithm can convert complex nonlinear features into simple two-dimensional relationships, and was followed by the application of the clustering techniques of the U-matrix and the K-means. It was assumed that the meteorological field patterns be simply expressed by the spatial distribution of wind components at the 850 hPa level and Precipitable Water (PW) in the southwestern area including Kyushu in Japan. Consequently, the synoptic fields could be divided into eight kinds of patterns (clusters). One of the clusters has the notable spatial feature represented by high PW accompanied by strong wind components known as Low-Level Jet (LLJ). The features of this cluster indicate a typical meteorological field pattern that frequently causes disastrous heavy rainfall in Kyushu in the rainy season. From these results, the SOM technique may be an effective tool for the classification of complicated non-linear synoptic fields.

  • PDF

종관 기상 분포에 따른 PM2.5 농도의 공간적 차이에 관한 연구 (A Study on Spatial Differences in PM2.5 Concentrations According to Synoptic Meteorological Distribution)

  • 채다은;이순환
    • 한국환경과학회지
    • /
    • 제31권12호
    • /
    • pp.999-1012
    • /
    • 2022
  • To investigate the reason for the spatial difference in PM2.5 (Particulate Matter, < 2.5 ㎛) concentration despite a similar synoptic pattern, a synoptic analysis was performed. The data used for this study were the daily average PM2.5 concentration and meteorological data observed from 2016 to 2020 in Busan and Seoul metropolitan areas. Synoptic pressure patterns associated with high PM2.5 concentration episodes (greater than 35 ㎍/m3) were analyzed using K-means cluster analysis, based on the 900 hPa geopotential height of NCEP (National Centers for Environmental Prediction) FNL (Final analysis) data. The analysis identified three sub-groups related to high concentrations occurring only in Busan and Seoul metropolitan areas. Although the synoptic patterns of high PM2.5 concentration episodes that occur independently in Busan and Seoul metropolitan areas were similar, there was a difference in the intensity of pressure gradient and its direction, which tends to be an important factor determining the movement time of pollutants. The spatial difference in PM2.5 concentration in the Korean Peninsula is due to the difference and direction of the atmospheric pressure gradient that develops from southwest to northeast direction.

Brute-force 방법을 이용한 한반도 미세먼지 농도에 대한 배출원의 기여도 산출 연구 (Evaluation of Contribution Rate of PM Concentrations for Regional Emission Inventories in Korean Peninsula Using Brute-force Sensitivity Analysis)

  • 이순환;이강열
    • 한국환경과학회지
    • /
    • 제24권11호
    • /
    • pp.1525-1540
    • /
    • 2015
  • In order to clarify the contribution rate of PM concentration due to regional emission distribution, Brute force analysis were carried out using numerical estimated PM data from WRF-CMAQ. The emission from Kyeongki region including Seoul metropolitan is the largest contribution of PM concentration than that from other regions except for emission of trans-country and source itself. Contribution rate of self emission is also the largest at Kyeongki region and its rate reach on over 95 %. And the rate at Gangwon region also higher than any region due to synoptic wind pattern. Due to synoptic wind direction at high PM episode, pollutants at downwind area along from west to east and from north to south tends to mix intensively and its composition is also complicated. Although the uncertainty of initial concentration of PM, the contribution of regional PM concentration tend to depend on the meteorological condition including intensity of synoptic and mesoscale wind and PM emission pattern over upwind region.

우리나라 내습태풍 유형에 따른 강우특성 및 종관기후학적 분석 (Assessment of Precipitation Characteristics and Synoptic Pattern Associated with Typhoon Affecting the South Korea)

  • 김태정;박건철;권현한
    • 한국수자원학회논문집
    • /
    • 제48권6호
    • /
    • pp.463-477
    • /
    • 2015
  • 최근 빈번하게 발생하는 이상기후 현상은 수자원관리에 많은 어려움을 주고 있으며 예상치 못한 기상관련 재난피해를 야기하고 있다. 특히, 기후변화에 의해 점차 태풍의 세력이 강력해짐에 따라 태풍은 위험기상으로 인지된다. 본 연구의 주요목적은 태풍으로 인하여 발생하는 강우특성 및 종관기후학적 분석을 수행하는 것으로 일본 지역특별기상센터(Regional Specialized Meteorological Center Tokyo Typhoon Center, RSMC)에서 제공하는 1973년부터 2012년의 6시간 간격 최적경로(best track) 자료를 사용하여 우리나라에 상륙한 태풍사상만을 대상으로 태풍의 상륙 지속시간(내습시간)을 총 4개의 시간구간으로 구분하여 각 내습유형에 따른 강우특성 및 종관기후학적 분석을 수행하였다. 본 연구를 통한 결과는 태풍의 진로 및 이동속도를 예측 가능한 현 시점에서, 우리나라 태풍내습시 내습유형에 따른 홍수방어 및 사전대피와 같은 재해관리 측면에서 매우 유용한 정보를 제공할 것으로 사료된다. 향후 연구로서 본 연구를 통해서 확인된 기상학적 패턴을 활용하여 단기 태풍강수량 모의기법 개발이 필요할 것으로 판단된다.

자기조직화지도를 이용한 서울 폭염사례 분류 연구 (Classification of Heat Wave Events in Seoul Using Self-Organizing Map)

  • 백승윤;김상욱;정명일;노준우;손석우
    • 한국기후변화학회지
    • /
    • 제9권3호
    • /
    • pp.209-221
    • /
    • 2018
  • The characteristics of heat wave events in Seoul are analyzed using weather station data from Korea Meteorological Administration (KMA) and European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data from 1979 to 2016. Heat waves are defined as events in the upper 10th percentile of the daily maximum temperatures. The associated synoptic weather patterns are then classified into six clusters through Self-Organizing Map (SOM) analysis for sea-level pressure anomalies in East Asia. Cluster 1 shows an anti-cyclonic circulation and weak troughs in southeast and west of Korea, respectively. This synoptic pattern leads to southeasterly winds that advect warm and moist air to the Korean Peninsula. Both clusters 2 and 3 are associated with southerly winds formed by an anti-cyclonic circulation over the east of Korea and cyclonic circulation over the west of Korea. Cluster 4 shows a stagnant weather pattern with weak winds and strong insolation. Clusters 5 and 6 are associated with F?hn wind resulting from an anti-cyclonic circulation in the north of the Korean Peninsula. In terms of long-term variations, event frequencies of clusters 4 and 5 show increasing and decreasing trends, respectively. However, other clusters do not show any long-term trends, indicating that the mechanisms that drive heat wave events in Seoul have remained constant over the last four decades.

최근 5년(2008~2012) 간 우리나라에 내린 봄비의 종관기상학적 특성 (The Synoptic Meteorological Characteristics of Spring Rainfall in South Korea during 2008~2012)

  • 박소연;이영곤;김정윤;안숙희;김백조
    • 한국환경과학회지
    • /
    • 제22권4호
    • /
    • pp.443-451
    • /
    • 2013
  • Spring rainfall events were comprehensively analyzed based on the distribution of precipitation amount and the related synoptic weather between 2008~2012. Forty-eight cases are selected among the rain events of the entire country, and each distribution of the 24-hour accumulated precipitation amount is classified into three types: evenly distributed rain(Type 1), more rain in the southern area and south coast region (Type 2), and more rain in the central region (Type 3), respectively. Type 1 constitutes the largest part(35 cases, 72.9%) with mean precipitation amount of 19.4 mm, and the 17 cases of Type 1 are observed in March. Although Type B and C constitutes small parts (11 cases, 22.9% and 2 cases, 4.2%), respectively. The precipitation amount of these types is greater than 34.5 mm and occurred usually in April. The main synoptic weather patterns affecting precipitation distribution are classified into five patterns according to the pathway of low pressures. The most influential pattern is type 4, and this usually occurs in March, April, and May (Low pressures from the north and the ones from the west and south consecutively affect South Korea, 37.5%). The pattern 3(Low pressures from the south affect South Korea, 25%) happens mostly in April, and the average precipitation is usually greater than 30 mm. This value is relatively higher than the values in any other patterns.

한반도 한파의 지역적 강화 메커니즘 (Local Enhancement Mechanism of Cold Surges over the Korean Peninsula)

  • 이혜영;김주완;박인규;강현규;류호선
    • 대기
    • /
    • 제28권4호
    • /
    • pp.383-392
    • /
    • 2018
  • This study investigates synoptic characteristics of cold surges over South Korea during winter season (December-February). A total of 63 cold events are selected by quantile regression analysis using daily mean temperature observations from 11 KMA stations for 38 years (1979/80-2016/17). Large-scale pressure pattern during the cold surges is well characterized by high over Siberia and low over Aleutian regions, which elucidates cold advection over the Korean peninsula. However, the large-scale pattern cannot successfully explain the observed sudden decrease of temperature during the cold surges. Composite analyses reveal that a synoptic-scale cyclone developing over the northern Japan is a key feature that significantly contribute to the enhancement of cold advection by increasing pressure gradient over the Korean peninsula. Enhanced sensible and latent heat fluxes are observed over the southern ocean of Korea and Japan during the cold surges due to temperature and humidity differences between the near surface and the lower atmosphere over the ocean. The evaporated water vapor transported toward the center of the surface cyclone and condenses in the lower-to-middle troposphere. The released energy likely promotes the development of the surface cyclone by inducing positive PV near the surface of the heating region.

중회귀 모형을 이용한 울산지역 오존 포텐셜 모형의 설계 및 평가 (Design and Assessment of an Ozone Potential Forecasting Model using Multi-regression Equations in Ulsan Metropolitan Area)

  • 김유근;이소영;임윤규;송상근
    • 한국대기환경학회지
    • /
    • 제23권1호
    • /
    • pp.14-28
    • /
    • 2007
  • This study presented the selection of ozone ($O_3$) potential factors and designed and assessed its potential prediction model using multiple-linear regression equations in Ulsan area during the springtime from April to June, $2000{\sim}2004$. $O_3$ potential factors were selected by analyzing the relationship between meterological parameters and surface $O_3$ concentrations. In addition, cluster analysis (e.g., average linkage and K-means clustering techniques) was performed to identify three major synoptic patterns (e.g., $P1{\sim}P3$) for an $O_3$ potential prediction model. P1 is characterized by a presence of a low-pressure system over northeastern Korea, the Ulsan was influenced by the northwesterly synoptic flow leading to a retarded sea breeze development. P2 is characterized by a weakening high-pressure system over Korea, and P3 is clearly associated with a migratory anticyclone. The stepwise linear regression was performed to develop models for prediction of the highest 1-h $O_3$ occurring in the Ulsan. The results of the models were rather satisfactory, and the high $O_3$ simulation accuracy for $P1{\sim}P3$ synoptic patterns was found to be 79, 85, and 95%, respectively ($2000{\sim}2004$). The $O_3$ potential prediction model for $P1{\sim}P3$ using the predicted meteorological data in 2005 showed good high $O_3$ prediction performance with 78, 75, and 70%, respectively. Therefore the regression models can be a useful tool for forecasting of local $O_3$ concentration.

Numerical Analysis of Wintertime Air Pollution in East Asia Region Using Long-Range Transport Model

  • Jang, Eun-Suk
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권2호
    • /
    • pp.103-110
    • /
    • 2000
  • In order to understand the wintertime intermittent characteristics of the trans-boundary air pollutant transport observed in East Asia, a numerical simulation of the long-range transport of pollutants was applied using an atmospheric transport model(STEM-II). The numerical simulation was carried out for the entire month of January 1997 and specific atmospheric aerosol (including sulfate, nitrate, and other ion compounds0 observation data were compared from four observation sites(Cheju Island, Kanghwa Island, Dazaifu, and Fukue Island). The observation data revealed that concentration peaks were intermittently observed at 3 to 4-day intervals plus the four observation sites exhibited a very similar spatial variation. The horizontal and spatial scale of the heavily polluted air masses was analyzed based on numerical results. The mechanism of the intermittent transport of air pollutants was clearly explained by a comparison of the observed data with the numerical output. It was found that the wind pattern variations associated with the synoptic scale pressure system changes play an extremely important role in the transport of pollutants in this region.

  • PDF

수도권지역 오존오염 패턴과 기상학적 특성 (Ozone Pollution Patterns and the Relation to Meteorological Conditions in the Greater Seoul Area)

  • 오인보;김유근;황미경
    • 한국대기환경학회지
    • /
    • 제21권3호
    • /
    • pp.357-365
    • /
    • 2005
  • The typical patterns of surface $O_3$ pollution and their dependence on meteorology were studied in the Greater Seoul Area (GSA) during warm season (April-September) from 1998 to 2002. In order to classify the $O_3$ pollution patterns, two-stage (average linkage then k-means) clustering technique was employed based on daily maximum $O_3$ concentrations obtained from 53 monitoring sites during high $O_3$ events (118 days). The clustering technique identified four statistically distinct $O_3$ pollution patterns representing the different horizontal distributions and levels of $O_3$ in GSA. The prevailed pattern (93 days, $49.5\%$) distinctly showed the gradient of $49.5\%$ concentrations going from west to east in GSA. Very high $49.5\%$ concentrations throughout GSA (24 days, $12.8\%$) were also found as a significant pattern of severe $O_3$ pollution. In order to understand the characteristics of $O_3$ pollution patterns, the relationship between $O_3$ pollution patterns and meteorological conditions were analyzed using both synoptic charts and surface/upper air data. Each pattern was closely associated with surface wind interacted with synoptic background flow allowing to transport and accumulate $O_3$ and its precursor. In particular, the timing and inland penetration of sea-breeze were apparently found to play very important role in determining $O_3$ distributions.