• 제목/요약/키워드: Syngas Gas Combustion

검색결과 72건 처리시간 0.028초

IGCC 합성가스 냉각기 상부의 열유동 및 입자거동 특성에 대한 전산해석 연구 (Numerical simulations on flow and particle behaviors in the upper part of a syngas cooler for IGCC)

  • 박상빈;예인수;류창국;김봉근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.147-148
    • /
    • 2012
  • The syngas produced from coal gasification is cooled down for gas cleaning by a syngas cooler that produces steam. Due to the presence of fly slag in the syngas, erosion, slagging and corrosion especially in the upper part of the syngas cooler may cause major operational problems. This study investigates the flow, heat transfer and particle behaviors in the syngas cooler of a 300MWe IGCC plant by using computational fluid dynamics. For various operational loads and geometry, the gas and particle flows directly impinged on the wall opposite to the syngas inlet, which may lead to erosion of the membrane wall. In the evaporate channels inside the syngas cololr, the particle flows were concentrated more on the outer channel where slagging becomes more serious. The heat transfer to the wall was mainly by convection which was larger on the side wall below the inlet level.

  • PDF

파일럿 규모의 폐기물 다단열분해 가스화시스템의 운전특성 (Operating Characteristics of Pilot Scale Multi-Staged Waste Pyrolysis & Gasification System)

  • 이정우;류태우;방병열;문지홍;이재욱;박상신;김낙주
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.331-335
    • /
    • 2009
  • A novel multi-staged waste pyrolysis & gasification system of pilot scale (~1 ton/day) is designed and constructed in Korea Institute of Industrial Technology. The pyrolysis & gasification system is composed of pyrolysis & gasification system, syngas reformer, syngas cleaning system, gas engine power generation system and co-combustion system. For each unit process, experimental approaches have been conducted to find optimal design and operating conditions. As a result, We can produce syngas with a calorific value of ~4000 kcal/$Nm^3$ and cold gas efficiency of the system is more than 55 % in case of waste plastic and oxygen as a gasifying agent.

  • PDF

바이오매스 합성가스를 이용한 혼소식 디젤엔진 발전기의 적용성 평가 (Assessment of Dual Fuel Engine Performance Using Biomass Syngas)

  • 윤여성;서도현;강구;최선화;홍성구
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.109-116
    • /
    • 2017
  • Biomass gasification produces syngas or producer gas as low calorific fuel gas that can be used as a fuel for combustion or prime movers as well as chemical synthesis. Internal combustion engines are readily available with lower costs and easily used for producing distributed power using biomass syngas. In this study, a dual fuel diesel engine was used to evaluate its performance when biomass syngas is used for fuel. The engine was originally developed for biogas application with a diesel engine with a 2,607 cc displacement. Both diesel fuel and syngas consumptions were observed at the different load conditions. The results indicate that the dual fuel engine showed a reasonably good performance and up to 63 % of diesel fuel saving.

바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가 (Modification of an LPG Engine Generator for Biomass Syngas Application)

  • 엘리에젤 하비네자;홍성구
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

석탄가스화 복합화력 발전용 가스터빈 성능해석 (Performance Analysis of a Gas Turbine for Integrated Gasification Combined Cycle)

  • 이종준;차규상;손정락;김동섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.771-774
    • /
    • 2007
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed with hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of the syngas to the performance of a gas turbine in a combined cycle power plant. For this purpose, a commercial gas turbine is selected and its performance characteristics are analyzed with syngas. It is found that different heating values of those fuels and chemical compositions in their combustion gases are the causes in the different performance characteristics. Also, Changing of turbine inlet Mass flow lead to change the turbine matching point, in the event the pressure ratio is changed.

  • PDF

도시가스와 혼합가스($H_2$, CO) 적용 시 점화시기 및 공연비에 따른 발전효율 및 질소산화물 배출량 비교 (Comparison of effects of spark timing and fuel ratio on engine efficiency and $NO_x$ emission for fuel of city gas and syngas($H_2$ and CO))

  • 정철영;이경택;송순호;전광민;남상익
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.817-820
    • /
    • 2009
  • Research on usage of syngas produced by waste gasification is on going all around the world. Syngas which consists of $H_2$, CO, $CO_2$, $N_2$, has different combustion characteristics from current city gas; due to distinct flame propagation speed of the fuel, syngas has different spark timing and air fuel ratio at maximum generating efficiency. This is why finding both the optimum point of spark timing and air fuel ratio is so important in order to improve thermo efficiency and secure stable running of gas generated by relatively low heating value syngas. Moreover, since emission of $NO_x$ is strictly regulated, it is important to operate lean burn condition that reduces NOx emission.

  • PDF

코크스 오븐 가스(COG)를 이용한 수소 및 합성가스 제조 기술 개발 동향 분석 (A Review of Technology Development Trend for Hydrogen and Syngas Production with Coke Oven Gas)

  • 최종호
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1247-1260
    • /
    • 2022
  • The steel industry accounts for about 5% of the total annual global energy consumption and more than 6% of the total anthropogenic carbon dioxide emissions. Therefore, there is a need to increase energy efficiency and reduce greenhouse gas emissions in these industries. The utilization of coke oven gas, a byproduct of the coke plant, is one of the main ways to achieve this goal. Coke oven gas used as a fuel in many steelmaking process is a hydrogen-rich gas with high energy potential, but it is commonly used as a heat source and is even released directly into the air after combustion reactions. In order to solve such resource waste and energy inefficiency, several alternatives have recently been proposed, such as separating and refining hydrogen directly from coke oven gas or converting it to syngas. Therefore, in this study, recent research trends on the separation and purification of hydrogen from coke oven gas and the production of syngas were introduced.

충돌제트 버너에서 합성가스($H_2$/CO)/공기 예혼합화염의 안정화 특성 (Stability Characteristics of Syngas($H_2$/CO)/Air Premixed Flames using an Impinging Jet Burner)

  • 박주용;이기만;황철홍
    • 한국연소학회지
    • /
    • 제16권1호
    • /
    • pp.15-21
    • /
    • 2011
  • An experimental study was conducted to investigate the flame stability of the synthetic gas (syngas) using an impinging premixed jet burner. Since the syngas mainly consisted of $H_2$ and CO, the $H_2$/CO mixture was simulated as the syngas. $H_2$/CO mixture ratios, fuel/air mixture velocities and equivalence ratios were used as major parameters on the flame stabilitym The role of the impinging plate on the flame stability was also examined. In addition, laminar burning velocities of the $H_2$/CO mixture were predicted numerically to understand the characteristics of the flame stability for the syngas. The increase in the H2 concentration into the syngas brings about the extension of the blowout limit and the reduction in the flashback limit in terms of the stable flame region. The impinging jet plate broadened the blowout limit but does not play important role in changing of the flashback limit. Finally, it was found that the stability region of the flame using the syngas, which is expressed in terms of the mixture velocity and the equivalence ratio in this study, significantly differed from that of $CH_4$.

메탄/합성가스 혼합물에 의한 발전용 SI 가스엔진의 성능에 관한 연구 (Study on the Performance of a Spark Ignition Gas Engine for Power Generation fueled by the Methane/Syngas Mixture)

  • 차효석;허광범;송순호
    • 한국가스학회지
    • /
    • 제19권5호
    • /
    • pp.7-12
    • /
    • 2015
  • 현재까지 수소는 주로 천연가스의 연료 개질에 의해 발생된 합성가스를 이용해 생산된다. 합성가스 내의 수소 수율을 높이기 위해선 추가적인 공정이 필요하다. 하지만, 수소의 수율 향상을 위한 공정에는 별도의 에너지원과 경제적 비용이 수반된다. 그러므로 보다 효율적으로 합성가스를 활용하기 위해 그 자체로 혼합물로 이용하는 방법에 관한 관련 연구들이 이루어지고 있다. 본 연구에서는 30kW급 발전용 스파크 점화 가스엔진에서 메탄/합성가스 혼합물이 엔진의 주요 성능에 미치는 영향을 조사하였다. 그 결과 메탄/합성가스 혼합물에 의해서 최대 실린더 내부 압력과 그 때의 크랭크 각도와 같은 엔진 내 연소 현상은 개선되는 것으로 나타났다. 이를 통해 메탄-합성가스 혼합물의 연료 전환 효율은 메탄-수소 혼합물의 약 98% 수준으로 향상시킬 수 있고 질소산화물 배출량은 메탄-수소 혼합물의 약 12%만큼 감소시킬 수 있다.