• 제목/요약/키워드: Synergistic response

검색결과 119건 처리시간 0.038초

Anesthetic and Physiological Effects of Clove oil and Lidocaine-HCl on the Grass Puffer, Takifugu niphobles

  • Gil, Hyun Woo;Lee, Tae Ho;Choi, Cheol Young;Kang, Shin Beom;Park, In-Seok
    • Ocean and Polar Research
    • /
    • 제39권1호
    • /
    • pp.1-11
    • /
    • 2017
  • The aim of this study was to determine the physiological response and the applicable concentration ranges of anesthetic clove oil and anesthetic lidocaine-HCl, and to investigate the synergistic effect of a mixture of these two anesthetics on the in grass puffer (Takifugu niphobles). The anesthesia times decreased and the recovery times increased with increasing concentrations of clove oil and lidocaine-HCl. Applicable concentration ranges for long-term transportation requiring more than 1 hour were 2 ppm for clove oil and 50 ppm for lidocaine-HCl. With mixtures of the two anesthetics, the anesthesia time decreased as the admixture concentration of clove oil and lidocaine-HCl increased. Anesthesia times of experimental groups with the combined anesthetics were shorter than those with the same concentrations of clove oil or lidocaine-HCl alone. Plasma cortisol concentrations were highest at 6 hours in all experimental groups anesthetized with the mixture of clove oil and lidocaine-HCl, while all groups with clove oil or lidocaine-HCl alone had the highest plasma cortisol concentrations at 12 hours. Plasma glucose concentrations were highest at 12 hours in experimental groups anesthetized with the mixture of clove oil and lidocaine-HCl, while groups with clove oil or lidocaine-HCl alone had the highest plasma glucose at 24 hours. The results of this study provide basic information about anesthetics and the synergistic effect of mixtures of anesthetics in this fish species. This information should be useful for aquaculturists who require methods for safe and easy fish handling, and for transporters who require that minimal stress is imposed on fish during transport.

리튬 및 발프로에이트 병용 처치가 PC12 세포에서 ERK1/2 인산화와 ELK1 및 C-FOS 전사활성에 미치는 영향 (Effects of Combined Treatments of Lithium and Valproate on the Phosphorylation of ERK1/2 and Transcriptional Activity of ELK1 and C-FOS in PC12 Cells)

  • 차승근;김세현;하규섭;신순영;강웅구
    • 생물정신의학
    • /
    • 제20권4호
    • /
    • pp.159-165
    • /
    • 2013
  • Objectives Mechanisms of clinical synergistic effects, induced by co-treatments of lithium and valproate, are unclear. Extracellular signal-regulated kinase (ERK) has been suggested to play important roles in mechanisms of the action of mood stabilizers. In this study, effects of co-treatments of lithium and valproate on the ERK1/2 signal pathway and its down-stream transcription factors, ELK1 and C-FOS, were investigated in vitro. Methods PC12 cells, human pheochromocytoma cells, were treated with lithium chloride (30 mM), valproate (1 mM) or lithium chloride + valproate. The phosphorylation of ERK1/2 was analyzed with immunoblot analysis. Transcriptional activities of ELK1 and C-FOS were analyzed with reporter gene assay. Results Single treatment of lithium and valproate increased the phosphorylation of ERK and transcriptional activities of ELK1 and C-FOS, respectively. Combined treatments of lithium and valproate induced more robust increase in the phosphorylation of ERK1/2 and transcriptional activities of ELK1 and C-FOS, compared to those in response to single treatment of lithium or valproate. Conclusions Co-treatments of lithium and valproate induced synergistic increase in the phosphorylation of ERK1/2 and transcriptional activities of its down-stream transcription factors, ELK1 and C-FOS, compared to effects of single treatment. The findings might suggest potentiating effects of lithium and valproate augmentation treatment strategy.

Cytokines Regulate the Expression of the Thymus and Activation-Regulated Chemokine (TARC; CCL17) in Human Skin Fibroblast Cells

  • Lee, Ji-Sook;Kim, In-Sik;Kim, Dong-Hee;Yun, Chi-Young
    • Animal cells and systems
    • /
    • 제10권1호
    • /
    • pp.15-20
    • /
    • 2006
  • Allergic inflammation is thought to be a Th2 cell-dominant immune response during which tissue-resident fibroblasts produce chemokines which contribute to the recruitment of migratory leukocytes to sites of tissue injury. Thymus and activation-regulated chemokine (TARC; CCL17) is a potent member of the CC chemokine family and a selective chemoattractant for Th2 cells. In order to study the regulatory profiles of TARC production by $TNF-{\alpha}$, $IFN-{\gamma}$, and Il-4 in human normal skin fibroblast, CCD-986sk cell line was used. The expression of TARC protein was measured using ELISA, and mRNA level was detected by RT-PCR. The combination of $TNF-{\alpha}$ and IL-4 induced a time-and dose-dependent synergistic increase in the expression of TARC at both protein and mRNA levels in the cultured human skin fibroblasts. Exposure of the cells to single cytokine had no effect on TARC expression. The high concentration (100 ng/ml) and long incubation time (72 h) of $IFN-{\gamma}$ further enhanced the TARC production induced by $TNF-{\alpha}$/lL-4 in the skin fibroblast. This synergistic effect of Th1 and Th2 type cytokines on TARC production by skin fibroblasts may contribute to the inflammatory cell infiltration and tissue damage with allergic inflammation.

방사열 자극실험쥐에서 Ketorolac과 Morphine의 병용투여 효과 (The Analgesic Interaction between Ketorolac and Morphine in Radiant Thermal Stimulation Rat)

  • 노장호;최동훈;이윤우;윤덕미
    • The Korean Journal of Pain
    • /
    • 제18권1호
    • /
    • pp.10-14
    • /
    • 2005
  • Background: Previous studies have suggested synergistic analgesic drug interactions between NSAIDs and opioids in neuropathic and inflammatory pain models. The aim of this study was to investigate the analgesic drug interaction between intraperitoneal (IP) ketorolac and morphine in radiant thermal stimulation rat. Methods: Initially, we assessed the withdrawal latency time of the hindpaw to radiant thermal stimulation every 15 min for 1 hour and every 30 min for next 1 hour after IP normal saline 5 ml (control group). The latency time was changed into percent maximal possible effect (%MPE). Next, IP dose response curves were established for the %MPE of morphine (0.3, 1, 3, 10 mg/kg) and ketorolac (3, 10, 30 mg/kg) to obtain the $ED_{50}$ for each agent. And we confirmed that the IP morphine effect was induced by opioid receptor through IP morphine followed by IP naloxone. At last, we injected three doses of IP ketorolac (3, 10, 30 mg/kg) mixed with one dose of morphine (2 mg/kg) for fixed dose analysis. Results: IP morphine delayed the paw withdrawal latency time dose dependently, but not ketorolac. $ED_{50}$ of IP morphine was 2.1 mg/kg. And the IP morphine effect was reversed to control level by IP naloxone. IP ketorolac + morphine combination showed no further additional effects on paw withdrawal latency time over morphine only group. Conclusions: IP ketorolac did not produce antinociceptive effect during radiant thermal stimulation. There was neither additional nor synergistic analgesic interaction between IP morphine and ketorolac in thermal stimulation rat.

Oral Administration of Poly-Gamma-Glutamic Acid Significantly Enhances the Antitumor Effect of HPV16 E7-Expressing Lactobacillus casei in a TC-1 Mouse Model

  • Kim, Eunjin;Yang, Jihyun;Sung, Moon-Hee;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1444-1452
    • /
    • 2019
  • The conventional prophylactic vaccines for human papillomavirus (HPV) efficiently prevent infection with high-risk HPV types, but they do not promote therapeutic effects against cervical cancer. Previously, we developed HPV16 E7-expressing Lactobacillus casei (L. casei-E7) as a therapeutic vaccine candidate for cervical cancer, which induces antitumor therapeutic effects in a TC-1 murine cancer model. To improve the therapeutic effect of L. casei-E7, we performed co-treatment with poly-gamma-glutamic acid (${\gamma}-PGA$), a safe and edible biomaterial naturally secreted by Bacillus subtilis. We investigated their synergistic effect to improve antitumor efficacy in a murine cancer model. The treatment with ${\gamma}-PGA$ did not show in vitro cytotoxicity against TC-1 tumor cells; however, an enhanced innate immune response including activation of dendritic cells was observed. Mice co-administered with ${\gamma}-PGA$ and L. casei-E7 showed significantly suppressed growth of TC-1 tumor cells and an increased survival rate in TC-1 mouse models compared to those of mice vaccinated with L. casei-E7 alone. The administration of ${\gamma}-PGA$ markedly enhanced the activation of natural killer (NK) cells but did not increase the E7-specific cytolytic activity of $CD8^+$ T lymphocytes in mice vaccinated with L. casei-E7. Overall, our results suggest that oral administration of ${\gamma}-PGA$ induces a synergistic antitumor effect in combination with L. casei-E7.

배암차즈기와 홍삼 복합물의 호흡기 보호 및 질환 치료 상승 효과 (Enhancement of Respiratory Protective and Therapeutic Effect of Salvia plebeia R. Br. Extracts in Combination with Korean Red Ginseng)

  • 신한재;곽효민;이문용;경종수;장경화;한창균;양원경;김승형
    • 한국약용작물학회지
    • /
    • 제27권3호
    • /
    • pp.218-231
    • /
    • 2019
  • Background: We recently reported that Salvia plebeia R. Br. extracts suppress leukotriene production and effectively inhibit the airway inflammatory response by modulating inflammatory chemokine and cytokine expression. Here, we investigated the synergistic airway anti-inflammation effect of Salvia plebeia and Panax ginseng (Korean red ginseng, KRG) that has been used to treat various immune diseases such as asthma. Methods and Results: To evaluate the synergistic airway anti-inflammatory effect of Salvia plebeia and KRG, we measured the inhibitory effect of monotheraphy with either or co-theraphy with both on leukotriene and reactive oxygen species (ROS) production. Using coal a combustion, fly ash, and diesel exhaust particle (CFD)-induced respiratory disease mouse model, we found that co-theraphy synergistically suppressed airway inflammatory signs such as alveolar wall thickness and collagen fibers deposition, and decreased the number of total cell, $CD11b^+Gr-1^+$ cells, and inflammatory cytokines (IL17A, TNF, MIP-2 and CXCL-1) in bronchoalveolar lavage (BAL) fluid. Conclusions: We confirmed respiratory protection as a therapeutic effect of the Salbia plebeia-KRG 3 : 1 complex (KGC-03-PS) via anti-tracheal muscle contraction and expectorant animal studies using a CFD-induced respiratory disease mouse model.

Effects of Ionizing Radiation on Plants and the Radiological Protection of the Environment

  • Stanislav A. Geras'kin;Kim, Jin-Kyu
    • 환경생물
    • /
    • 제21권4호
    • /
    • pp.321-327
    • /
    • 2003
  • Differences between the principles for the radiological protection of man and the environment are compared. The derived levels of exposure for man and biota recommended by the international agencies with dose rates for chronic radiation producing effects at different levels of biological organization were given in terms of the biological effects. Cytogenetic effects on plants after an exposure to ionizing radiation at low doses alone and in combination with other factors are discussed. A wide range of experimental data were analysed and the general conclusions were extracted to cover the topics such as non-linearity of dose response, synergistic and antagonistic effects of the combined exposure of different factors, radiation-induced genomic instability, and the phenomena of radioadaptation.

UV공정을 이용한 NDMA처리 통계적 최적화 연구 (The Study of Statistical Optimization of NDMA Treatment using UV-Process)

  • 송원용;장순웅
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.96-101
    • /
    • 2009
  • The aim of this research was to apply experimental design methodology to optimizetion the photolytic degradation of N-nitrosodimethylamine (NDMA). Reactions were mathematically described as a function of parameters such as pH, initial NDMA concentration, and UV intensity using the Box-Behnken method. The results showed that the responses of NDMA removal (%) in photolysis were significantly affected by the synergistic effect of linear term of pH, initial NDMA concentration and UV intensity. The application of Response Surfase Methodology (RSM) using the Box-Behnken method yielded the following regression equation, which is an empirical relationship between the removal (%) of NDMA and test variables in coded unit: Y = 50.929 + 16.073(UV) - 7.909(NDMA) - 27.432(pH) - 11.385(UV)(NDMA) - 7.363(UV)(pH) +13.811(NDMA)(pH). The model predictions agreed well with the experimentally observed result ($R_2(ad.)=89%$).

Effects of Gut Extract Protein and Insulin on Glucose Uptake and GLUT 1 Expression in HC 11 Mouse Mammary Epithelial Cells

  • Myung, K.H.;Ahn, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권8호
    • /
    • pp.1210-1214
    • /
    • 2002
  • The large and rapid changes of glucose utilization in lactating mammary tissue in response to changes in nutritional state must be largely related by external signal of insulin. This also must be related with the quantity and composition of the diet in vivo. To characterize the mode of gut extract protein with insulin, in vitro experiment was conducted with HC11 cells. The gut extract protein has not only the same effect as insulin alone but also the synergistic effect with insulin in 2-Deoxy[3H] glucose uptake. Although the gut extract did not modulates glucose uptake via increasing the rate of translation of the GLUT1 protein, northern blot analysis indicated that the gut extract protein increased the expression of GLUT1 mRNA by a threefold and also there was a dose-dependent increase in the expression of GLUT1 mRNA. The gut extract protein is therefore shown to be capable of modulating glucose uptake by transcription level with insulin in HC 11 cells.

Enhancement of Supercritical $CO_2$ Inactivation of Spores of Penicillium oxalicum by Ethanol Cosolvent

  • Park, Hyong Seok;Kim, Kyoung Heon
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.833-836
    • /
    • 2013
  • The inactivation of spores of Penicillium oxalicum by supercritical carbon dioxide ($SC-CO_2$) was optimized by response surface methodology. The optimal inactivation conditions of 16.8 MPa, $49^{\circ}C$, and 20 min were determined using ridge analysis, at which the predicted and experimental $log_{10}$ reductions were obtained as 5.74 and 6.12, respectively. The synergistic effect of a cosolvent (ethanol), which was used to modify $SC-CO_2$, on the inactivation of the fungal spores was investigated. At less severe conditions of 10 MPa and $40^{\circ}C$, P. oxalicum spores of $10^7$ CFU/ml were completely inactivated within 45 min by $SC-CO_2$ modified with ethanol.