• Title/Summary/Keyword: Synchronous Motor

Search Result 1,779, Processing Time 0.038 seconds

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim, Kyeong-Hwa;Young, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.88-98
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet(PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF., resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

A Study on Stabilization of Multi-Excited Induction Motor (다중여자 유도전동기의 안정도에 관한 연구)

  • 강만원;김한성
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.78-85
    • /
    • 1995
  • This paper covers stability and stabilization of Multi-Excited Induction Motor used in numberous electric equipment system of industrial field. The induction motor with multi-excitation has tow sets of three-phase system : One is connected to the AC source to supply most power required at the load, and the other is to the inverter for variable frequency and/or magnitude of voltage. The conventional induction motor is operated under single excitation mode only, that is called induction mode. But in multi-excited induction motor both the induction mode and the synchronous mode are possible, and the proposed multi-excited induction motor can be driven as a synchronous motor by the extra three-phase input. At the synchronous mode the efficiency is improved so higher than that at induction mode or conventional induction motor. The rating of the inverter used for speed control of numberous electric equipment system can be reduced upto one-tenth of that for conventional induction motor. Also the cost and maintenance fee of multi-excited induction motor can be reduced compared to any other motor.

  • PDF

An Optimal Efficiency Control of Reluctance Synchronous Motor using Direct Torque Control (직접 토크 제어를 이용한 릴럭턴스 동기 전동기의 최대 효율제어)

  • 김남훈;김동희;노채균;김민회;백원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.211-220
    • /
    • 2003
  • This paper presents an implementation of direct torque control (DTC) of Reluctance Synchronous Motor (RSM) with an efficiency optimization. The equipment circuit in Reluctance Synchronous Motor which consider with iron losses is theoretically analyzed and the optimal current ration between torque current and exiting current analytically derived to drive RSM at maximum efficiency. For RSM, torque dynamics can be maintained even with controlling the flux level because a torque is directly proportional to the stator current unlike induction motor. The experimental results are presented to validate the applicability of the proposed method. The developed control system show high efficiency features with 1.0 Kw RSM having 2.57 ratio of d/q reluctance.

Parameter Identification of a Synchronous Reluctance Motor by using a Synchronous PI Current Regulator at a Standstill

  • Hwang, Seon-Hwan;Kim, Jang-Mok;Khang, Huynh Van;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.491-497
    • /
    • 2010
  • This paper proposes an estimation algorithm for the electrical parameters of synchronous reluctance motors (SynRMs) by using a synchronous PI current regulator at standstill. In reality, the electrical parameters are only measured or estimated in limited conditions without fully considering the effects of the switching devices, connecting wires, and magnetic saturation. As a result, the acquired electrical parameters are different from the real parameters of the motor drive system. In this paper, the effects of switching devices, connecting wires, and the magnetic saturation are considered by simultaneously using the short pulse and closed loop equations of resistance and synchronous inductances. Therefore, the proposed algorithm can be easily and safely implemented with a reduced measuring time. In addition, it does not need any external or additional measurement equipment, information on the motor's dimensions, and material characteristics as in the case of FEM. Several experimental results verify the effectiveness of the proposed algorithm.

Support-vector-machine Based Sensorless Control of Permanent Magnet Synchronous Motor

  • Back, Woon-Jae;Han, Dong-Chang;Kim, Jong-Mu;Park, Jung-Il;Lee, Suk-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.149-152
    • /
    • 2004
  • Speed and torque control of PMSM(Permanent Magnet Synchronous Motor) are usually achieved by using position and speed sensors which require additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been performed for the elimination of speed and position sensors. In this paper, a novel speed sensorless control of a permanent magnet synchronous motor based on SVMR(Support Vector Machine Regression) is presented. The SVM regression method is an algorithm that estimates an unknown mapping between a system's input and outputs, from the available data or training data. Two well-known different voltage model is necessary to estimate the speed of a PMSM. The validity and the usefulness of proposed algorithm are thoroughly verified through numerical simulation.

  • PDF

A Torque Angle Control of Permanent Magnet Synchronous Motors (영구자석 동기 전동기의 토오크 각 제어)

  • Choi, U.D.;Jung, M.K.;Lee, H.S.;Kim, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.336-339
    • /
    • 1990
  • The permanent magnet synchronous motor windings are energized by sinusoidal excitation current. The frequency of the winding excitation current is synchronous with motor movement and the phase is a function of the motor position with respect to the stator. The total operational speed range of the system is substantially incresed by controlling the phase of the excitation currents at a function of the desired speed. This becomes the torque angle between stator rotating field and motor position. In this paper, torque angle control method is described for surface permanent magnet synchronous motor (SPMSM). The control circuit for realizing control method is investigated and the system test is carried out.

  • PDF

Dynamic Characteristic Analysis of Line-Start Permanent Magnet Synchronous Motor (직립 기동 영구자석 동기전동기의 동특성 해석)

  • Kim, Byong-Kuk;Jo, Won-Yung;Lee, In-Jae;Moon, Ji-Woo;Kim, Mi-Jung;Lim, Seong-Hwan;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.185-187
    • /
    • 2006
  • The line-start permanent magnet synchronous motor has a high efficiency and an advantage in constant speed operation regardless of the effect of load variation. However it is difficult to predict the performance of characteristics accurately, because of the unbalanced starting torque with the initial starting position of the rotor and the generation of a break torque. In this paper the dynamic characteristics of the line-start permanent magnet synchronous motor are described and compared with those of the squirrel-cage induction motor through the simulation to find the characteristics of the permanent magnets and the rotor bars in the line-start permanent magnet synchronous motor.

  • PDF

Optimal Design and Dynamic Characteristic Analysis of Line Start Permanent Magnet Synchronous Motor (직립 기동 영구자석 동기전동기의 최적설계 및 동특성 해석)

  • Kim, Do-Sun;Kim, Byong-Kuk;Lee, Byung-Jun;Cho, Youn-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.92-94
    • /
    • 2008
  • The interest in permanent magnet synchronous motor is present in a wide area of applications, ranging from high-performance servo drive to line-start application[1]. The are mainly two reasons for this trend: first low rotor losses and second the foiling prices of high-energy magnets. In this paper the dynamic characteristic of the line-start permanent magnet synchronous motor are described and compared with those if the squirrel-cage induction motor through the simulation to find the characteristics of the permanent magnets and the rotor bar in the line-start permanent magnet synchronous motor.

  • PDF

Improvement of the Thermal Characteristics of Synchronous Linear Motors through Structure Change (Synchronous Linear Motor의 구조변경에 의한 열특성에 개선)

  • 은인웅;이춘만;정원지;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.367-370
    • /
    • 1997
  • Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, the thermal behavior of a synchronous linear motor with high velocity and force is analyzed. To improve the thermal characteristics of the linear motor, structure of linear motor and cooler is changed. Some effects of an integrated cooler, an U-cooler and a thermal symmetrical cooler are presented.

  • PDF

Design of a Fuzzy Speed Controller for a Permanent Magnet Synchronous Motor (영구자석 동기전동기의 퍼지 속도제어기 설계)

  • Jung, Jin-Woo;Kim, Tae-Heoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1797-1802
    • /
    • 2010
  • This paper proposes a new fuzzy speed controller based on the Takagi-Sugeno fuzzy method to achieve a robust speed control of a permanent magnet synchronous motor(PMSM). The proposed controller requires the information of the load torque, so the second-order load torque observer is used to estimate it. The LMI condition is derived for the existence of the proposed fuzzy speed controller, and the LMI parameterization to calculate the gain matrices of the controller is provided. It is proven that the augmented control system including the fuzzy speed controller and the load torque observer is exponentially stable. To evaluate the performance of the proposed fuzzy speed controller, the simulation and experimental results are presented under motor parameter and load torque variations. Finally, it is clearly verified that the proposed control method can be used to accurately control the speed of a permanent magnet synchronous motor.