• Title/Summary/Keyword: Synchronized firing

Search Result 11, Processing Time 0.026 seconds

Digital Firing Control for Thyristor Converter (사이리스터 디지털 점호제어)

  • Kim Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.584-591
    • /
    • 2004
  • The conventional analog-based firing circuit can be implemented by comparing a linearly decreasing periodic sawtooth waveform synchronized to the ac supply, with a control signal corresponding to the desired converter delay angle. This circuit requires a large number of passive components (resistance and capacitor) and careful adjustment of the synchronization circuity. In this paper a novel firing circuit is proposed for thyristor switch. The proposed circuit is implemented by using digital components(FPGA, A/D, and DSP etc.) on the basis of the analog cosine method.

Digital firing control for high power thyristor converter (대용량 전력변환용 사이리스터 디지털 점호제어)

  • Lee Y.B.;Kim J.M.;Lim I.H.;Ryu H.S.;Song S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.565-568
    • /
    • 2003
  • The conventional analog-based firing circuit can be implemented by comparing a linearly decreasing periodic sawtooth waveform synchronized to the ac line, with a voltage corresponding to the desired converter delay angle. This circuit requires a large number of components (resistance and capacitor) and careful adjustment of the synchronization circuity In this paper a novel firing circuit is proposed for thyristor switch is elements. The proposed circuit is implemented on the basis of the analog cosine method using FPGA and microprocessor.

  • PDF

Spontaneous Firing Characteristics of Cardiovascular Neurons in the Rostral Ventrolateral Medulla during Somatosympathetic Reflex . 11. Minimal Neuronal Model (상부복외측 연수 심혈관계 세포의 체성교감 반사시 자발적 흥분발사특성 분석 :II. 최소 세포망 모델)

  • Goo, Yong-Sook;No, Jin-A;Cha, Eun-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.79-84
    • /
    • 1996
  • A number of experimental evidences suggest that the rnun ventrolateral medulla(RVLM) is the final common pathway in the regulation of arterial blood pressure. A Voup of neurons in the RVLM, called the cardiovascular neurons (UN), show spontaneous activity temporally synchronized with the periodic cardiac cycle. These neurons affect the sympathetic nerve discharge(SND), thus are believed to be responsible for blood pressure control. The present experiment identified 98 UVNs in 42 cats based on the temporal relationships between each neuron's activity with both the cardiac cycle and SWD. In 20 UWL changes of spontaneous firing rate(FR) during the somatosympathetic reflex(SSR) were studied Five different firing patterns were observed during the pressor and depressor responses of SSR, implying that they form an interconnected neuronal circuit interacting with one another to generate efferent signals for blood pressure regulation. In the following companion paper, the firing patterns of CVN are analyzed to develop a minimal neuronal circuit model explaining the present experimental outcome.

  • PDF

Spontaneous Firing Characteristics of Cardiovascular Neurons in the Rostral Ventrolateral Medulla During Somatosympathetic Reflex : II. Minimal Neuronal Model (상부복외측 연수 심혈관계 세포의 체성교감반사시 자발적 흥분발사특성 분석 : I. 실험적 연구)

  • 차은종;구용숙;이태수
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • A number of experimental evidences suggest that the rnun ventrolateral medulla(RVLM) is the final common pathway in the regulation of arterial blood pressure. A Voup of neurons in the RVLM, called the cardiovascular neurons (UN), show spontaneous activity temporally synchronized with the periodic cardiac cycle. These neurons affect the sympathetic nerve discharge(SND), thus are believed to be responsible for blood pressure control. The present experiment identified 98 UVNs in 42 cats based on the temporal relationships between each neuron's activity with both the cardiac cycle and SWD. In 20 UWL changes of spontaneous firing rate(FR) during the somatosympathetic reflex(SSR) were studied Five different firing patterns were observed during the pressor and depressor responses of SSR, implying that they form an interconnected neuronal circuit interacting with one another to generate efferent signals for blood pressure regulation. In the following companion paper, the firing patterns of CVN are analyzed to develop a minimal neuronal circuit model explaining the present experimental outcome.

  • PDF

Discrete Event System with Bounded Random Time Variation (제한된 시간변동을 갖는 시간제약 이산사건시스템의 스케줄링 분석)

  • Kim Ja Hui;Lee Tae Eok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.923-929
    • /
    • 2002
  • We discuss scheduling analysis for a discrete event system with time windows of which firing or holding time delays are subject to random variation within some finite range. To do this, we propose a modified p-lime Petri net, named p+-time Petri net. We develop a condition for which a synchronized transition does not have a dead token, that is, the firing epochs do not violate the time window constraints. We propose a method of computing the feasible range of the token sojourn time at each place based on a time difference graph. We also discuss an application for analyzing wafer residency times within the process chambers for a dual-armed cluster tool for chemical vapor deposition.

  • PDF

Study of Collective Synchronous Dynamics in a Neural Network Model

  • Cho, Myoung Won
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1385-1392
    • /
    • 2018
  • A network with coupled biological neurons provides various forms of collective synchronous dynamics. Such phase-locking dynamics states resemble eigenvectors in a linear coupling system in that the forms are determined by the symmetry of the coupling strengths. However, the states behave as attractors in a nonlinear dynamics system. We here study the collective synchronous dynamics in a neural system by using a novel theory. We exhibit how the period and the stability of individual phase-locking dynamics states are determined by the characteristics of synaptic couplings. We find that, contrary to common sense, the firing rate of a synchronized state decreases with increasing synaptic coupling strength.

Functional Connectivity Map of Retinal Ganglion Cells for Retinal Prosthesis

  • Ye, Jang-Hee;Ryu, Sang-Baek;Kim, Kyung-Hwan;Goo, Yong-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.307-314
    • /
    • 2008
  • Retinal prostheses are being developed to restore vision for the blind with retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Among the many issues for prosthesis development, stimulation encoding strategy is one of the most essential electrophysiological issues. The more we understand the retinal circuitry how it encodes and processes visual information, the greater it could help decide stimulation encoding strategy for retinal prosthesis. Therefore, we examined how retinal ganglion cells (RGCs) in in-vitro retinal preparation act together to encode a visual scene with multielectrode array (MEA). Simultaneous recording of many RGCs with MEA showed that nearby neurons often fired synchronously, with spike delays mostly within 1 ms range. This synchronized firing - narrow correlation - was blocked by gap junction blocker, heptanol, but not by glutamatergic synapse blocker, kynurenic acid. By tracking down all the RGC pairs which showed narrow correlation, we could harvest 40 functional connectivity maps of RGCs which showed the cell cluster firing together. We suggest that finding functional connectivity map would be useful in stimulation encoding strategy for the retinal prosthesis since stimulating the cluster of RGCs would be more efficient than separately stimulating each individual RGC.

Somatodendritic organization of pacemaker activity in midbrain dopamine neurons

  • Jinyoung Jang;Shin Hye Kim;Ki Bum Um;Hyun Jin Kim;Myoung Kyu Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.165-181
    • /
    • 2024
  • The slow and regular pacemaking activity of midbrain dopamine (DA) neurons requires proper spatial organization of the excitable elements between the soma and dendritic compartments, but the somatodendritic organization is not clear. Here, we show that the dynamic interaction between the soma and multiple proximal dendritic compartments (PDCs) generates the slow pacemaking activity in DA neurons. In multipolar DA neurons, spontaneous action potentials (sAPs) consistently originate from the axon-bearing dendrite. However, when the axon initial segment was disabled, sAPs emerge randomly from various primary PDCs, indicating that multiple PDCs drive pacemaking. Ca2+ measurements and local stimulation/perturbation experiments suggest that the soma serves as a stably-oscillating inertial compartment, while multiple PDCs exhibit stochastic fluctuations and high excitability. Despite the stochastic and excitable nature of PDCs, their activities are balanced by the large centrally-connected inertial soma, resulting in the slow synchronized pacemaking rhythm. Furthermore, our electrophysiological experiments indicate that the soma and PDCs, with distinct characteristics, play different roles in glutamate-induced burst-pause firing patterns. Excitable PDCs mediate excitatory burst responses to glutamate, while the large inertial soma determines inhibitory pause responses to glutamate. Therefore, we could conclude that this somatodendritic organization serves as a common foundation for both pacemaker activity and evoked firing patterns in midbrain DA neurons.

Development of a Test Stand for Measuring Ink Jetting Performance (잉크젯 토출 특성 평가 장치 개발)

  • Kwon, Kye-Si
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.45-50
    • /
    • 2008
  • An ink jetting measurement system has been developed such that the velocity as well as the volume of ink droplets can be measured. In order to measure the ink droplet, a strobe LED light was synchronized to the droplet firing signal in order to obtain frozen droplet images. Then, a LabVIEW based software was developed for the analysis of the droplet image. For the efficient droplet analysis, a user generated rectangular shaped ROI (Region of Interest) was used. By using ROI, the ink droplet image can be easily isolated from the other structures such as printhead and the processing area can be minimized.

Characterization of Rabbit Retinal Ganglion Cells with Multichannel Recording (다채널기록법을 이용한 토끼 망막 신경절세포의 특성 분석)

  • Cho Hyun Sook;Jin Gye-Hwan;Goo Yong Sook
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.228-236
    • /
    • 2004
  • Retinal ganglion cells transmit visual scene as an action potential to visual cortex through optic nerve. Conventional recording method using single intra- or extra-cellular electrode enables us to understand the response of specific neuron on specific time. Therefore, it is not possible to determine how the nerve impulses in the population of retinal ganglion cells collectively encode the visual stimulus with conventional recording. This requires recording the simultaneous electrical signals of many neurons. Recent advances in multi-electrode recording have brought us closer to understanding how visual information is encoded by population of retinal ganglion cells. We examined how ganglion cells act together to encode a visual scene with multi-electrode array (MEA). With light stimulation (on duration: 2 sec, off duration: 5 sec) generated on a color monitor driven by custom-made software, we isolated three functional types of ganglion cell activities; ON (35.0$\pm$4.4%), OFF (31.4$\pm$1.9%), and ON/OFF cells (34.6$\pm$5.3%) (Total number of retinal pieces = 8). We observed that nearby neurons often fire action potential near synchrony (< 1 ms). And this narrow correlation is seen among cells within a cluster which is made of 6~8 cells. As there are many more synchronized firing patterns than ganglion cells, such a distributed code might allow the retina to compress a large number of distinct visual messages into a small number of ganglion cells.

  • PDF