• Title/Summary/Keyword: Synaptic plasticity

Search Result 133, Processing Time 0.03 seconds

Apolipoprotein E in Synaptic Plasticity and Alzheimer's Disease: Potential Cellular and Molecular Mechanisms

  • Kim, Jaekwang;Yoon, Hyejin;Basak, Jacob;Kim, Jungsu
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.767-776
    • /
    • 2014
  • Alzheimer's disease (AD) is clinically characterized with progressive memory loss and cognitive decline. Synaptic dysfunction is an early pathological feature that occurs prior to neurodegeneration and memory dysfunction. Mounting evidence suggests that aggregation of amyloid-${\alpha}$ ($A{\alpha}$) and hyperphosphorylated tau leads to synaptic deficits and neurodegeneration, thereby to memory loss. Among the established genetic risk factors for AD, the ${\varepsilon}4$ allele of apolipoprotein E (APOE) is the strongest genetic risk factor. We and others previously demonstrated that apoE regulates $A{\alpha}$ aggregation and clearance in an isoform-dependent manner. While the effect of apoE on $A{\alpha}$ may explain how apoE isoforms differentially affect AD pathogenesis, there are also other underexplored pathogenic mechanisms. They include differential effects of apoE on cerebral energy metabolism, neuroinflammation, neurovascular function, neurogenesis, and synaptic plasticity. ApoE is a major carrier of cholesterols that are required for neuronal activity and injury repair in the brain. Although there are a few conflicting findings and the underlying mechanism is still unclear, several lines of studies demonstrated that apoE4 leads to synaptic deficits and impairment in long-term potentiation, memory and cognition. In this review, we summarize current understanding of apoE function in the brain, with a particular emphasis on its role in synaptic plasticity and the underlying cellular and molecular mechanisms, involving low-density lipoprotein receptor-related protein 1 (LRP1), syndecan, and LRP8/ApoER2.

Neuron Circuit Using a Thyristor and Inter-neuron Connection with Synaptic Devices

  • Ranjan, Rajeev;Kwon, Min-Woo;Park, Jungjin;Kim, Hyungjin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.365-373
    • /
    • 2015
  • We propose a simple and compact thyristor-based neuron circuit. The thyristor exhibits bi-stable characteristics that can mimic the action potential of the biological neuron, when it is switched between its OFF-state and ON-state with the help of assist circuit. In addition, a method of inter-neuron connection with synaptic devices is proposed, using double current mirror circuit. The circuit utilizes both short-term and long-term plasticity of the synaptic devices by flowing current through them and transferring it to the post-synaptic neuron. The double current mirror circuit is capable of shielding the pre-synaptic neuron from the post synaptic-neuron while transferring the signal through it, maintaining the synaptic conductance unaffected by the change in the input voltage of the post-synaptic neuron.

뉴로모픽 시스템용 시냅스 트랜지스터의 최근 연구 동향

  • Nam, Jae-Hyeon;Jang, Hye-Yeon;Kim, Tae-Hyeon;Jo, Byeong-Jin
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.4-18
    • /
    • 2018
  • Lastly, neuromorphic computing chip has been extensively studied as the technology that directly mimics efficient calculation algorithm of human brain, enabling a next-generation intelligent hardware system with high speed and low power consumption. Three-terminal based synaptic transistor has relatively low integration density compared to the two-terminal type memristor, while its power consumption can be realized as being so low and its spike plasticity from synapse can be reliably implemented. Also, the strong electrical interaction between two or more synaptic spikes offers the advantage of more precise control of synaptic weights. In this review paper, the results of synaptic transistor mimicking synaptic behavior of the brain are classified according to the channel material, in order of silicon, organic semiconductor, oxide semiconductor, 1D CNT(carbon nanotube) and 2D van der Waals atomic layer present. At the same time, key technologies related to dielectrics and electrolytes introduced to express hysteresis and plasticity are discussed. In addition, we compared the essential electrical characteristics (EPSC, IPSC, PPF, STM, LTM, and STDP) required to implement synaptic transistors in common and the power consumption required for unit synapse operation. Generally, synaptic devices should be integrated with other peripheral circuits such as neurons. Demonstration of this neuromorphic system level needs the linearity of synapse resistance change, the symmetry between potentiation and depression, and multi-level resistance states. Finally, in order to be used as a practical neuromorphic applications, the long-term stability and reliability of the synapse device have to be essentially secured through the retention and the endurance cycling test related to the long-term memory characteristics.

Reconstruction of Neural Circuits Using Serial Block-Face Scanning Electron Microscopy

  • Kim, Gyu Hyun;Lee, Sang-Hoon;Lee, Kea Joo
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.100-104
    • /
    • 2016
  • Electron microscopy is currently the only available technique with a spatial resolution sufficient to identify fine neuronal processes and synaptic structures in densely packed neuropil. For large-scale volume reconstruction of neuronal connectivity, serial block-face scanning electron microscopy allows us to acquire thousands of serial images in an automated fashion and reconstruct neural circuits faster by reducing the alignment task. Here we introduce the whole reconstruction procedure of synaptic network in the rat hippocampal CA1 area and discuss technical issues to be resolved for improving image quality and segmentation. Compared to the serial section transmission electron microscopy, serial block-face scanning electron microscopy produced much reliable three-dimensional data sets and accelerated reconstruction by reducing the need of alignment and distortion adjustment. This approach will generate invaluable information on organizational features of our connectomes as well as diverse neurological disorders caused by synaptic impairments.

Polyadenylation-Dependent Translational Control of New Protein Synthesis at Activated Synapse

  • Shin Chan-Young;Yang Sung-Il;Kim Kyun-Hwan;Ko Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2006
  • Synaptic plasticity, which is a long lasting change in synaptic efficacy, underlies many neural processes like learning and memory. It has long been acknowledged that new protein synthesis is essential for both the expression of synaptic plasticity and memory formation and storage. Most of the research interests in this field have focused on the events regulating transcriptional activation of gene expression from the cell body and nucleus. Considering extremely differentiated structural feature of a neuron in CNS, a neuron should meet a formidable task to overcome spatial and temporal restraints to deliver newly synthesized proteins to specific activated synapses among thousands of others, which are sometimes several millimeters away from the cell body. Recent advances in synaptic neurobiology has found that almost all the machinery required for the new protein translation are localized inside or at least in the vicinity of postsynaptic compartments. These findings led to the hypothesis that dormant mRNAs are translationally activated locally at the activated synapse, which may enable rapid and delicate control of new protein synthesis at activated synapses. In this review, we will describe the mechanism of local translational control at activated synapses focusing on the role of cytoplasmic polyadenylation of dormant mRNAs.

$Na^+/Ca^{2+}$ exchanger (NCX)-2, a temporal factor in regulation of synaptic plasticity and cognition

  • Shin, Hee-Sup
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.21-21
    • /
    • 2003
  • The role of a postsynaptic rise of [C $a^{2+}$]$_{i}$ in the induction of LTP and LTD has been well established. Both the levels and the duration of elevated [C $a^{2+}$]$_{i}$ are important in synaptic plasticity. LTP and LTD could be selectively induced according to intracellular $Ca^{2+}$ concentration. Although the specificity of $Ca^{2+}$ signaling can be achieved not only by amplitude but also by the frequency and duration of the calcium transient, the effects of changing amplitudes of $Ca^{2+}$ transients on synaptic plasticity have been extensively documented, but not so the effects of temporal changes.changes..

  • PDF

Metabotropic glutamate receptor dependent long-term depression in the cortex

  • Kang, Sukjae Joshua;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.557-564
    • /
    • 2016
  • Metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), a type of synaptic plasticity, is characterized by a reduction in the synaptic response, mainly at the excitatory synapses of the neurons. The hippocampus and the cerebellum have been the most extensively studied regions in mGluR-dependent LTD, and Group 1 mGluR has been reported to be mainly involved in this synaptic LTD at excitatory synapses. However, mGluR-dependent LTD in other brain regions may be involved in the specific behaviors or diseases. In this paper, we focus on five cortical regions and review the literature that implicates their contribution to the pathogenesis of several behaviors and specific conditions associated with mGluR-dependent LTD.

Involvement of Crosstalk Between cAMP and cGMP in Synaptic Plasticity in the Substantia Gelatinosa Neurons

  • Kim, Tae-Hyung;Chung, Ge-Hoon;Park, Seok-Beom;Chey, Won-Young;Jun, Sung-Jun;Kim, Joong-Soo;Oh, Seog-Bae
    • International Journal of Oral Biology
    • /
    • v.36 no.2
    • /
    • pp.83-89
    • /
    • 2011
  • Substantia gelatinosa (SG) neurons receive synaptic inputs from primary afferent $A{\delta}$- and C-fibers, where nociceptive information is integrated and modulated by numerous neurotransmitters or neuromodulators. A number of studies were dedicated to the molecular mechanism underlying the modulation of excitability or synaptic plasticity in SG neurons and revealed that second messengers, such as cAMP and cGMP, play an important role. Recently, cAMP and cGMP were shown to downregulate each other in heart muscle cells. However, involvement of the crosstalk between cAMP and cGMP in neurons is yet to be addressed. Therefore, we investigated whether interaction between cAMP and cGMP modulates synaptic plasticity in SG neurons using slice patchclamp recording from rats. Synaptic activity was measured by excitatory post-synaptic currents (EPSCs) elicited by stimulation onto dorsal root entry zone. Application of 1 mM of 8-bromoadenosine 3,5-cyclic monophosphate (8-Br-cAMP) or 8-bromoguanosine 3,5-cyclic monophosphate (8-Br-cGMP) for 15 minutes increased EPSCs, which were maintained for 30 minutes. However, simultaneous application of 8-BrcAMP and 8-Br-cGMP failed to increase EPSCs, which suggested antagonistic cross-talk between two second messengers. Application of 3-isobutyl-1-methylxanthine (IBMX) that prevents degradation of cAMP and cGMP by blocking phosphodiesterase (PDE) increased EPSCs. Co-application of cAMP/cGMP along with IBMX induced additional increase in EPSCs. These results suggest that second messengers, cAMP and cGMP, might contribute to development of chronic pain through the mutual regulation of the signal transduction.

Spinosin Attenuates Alzheimer's Disease-Associated Synaptic Dysfunction via Regulation of Plasmin Activity

  • Cai, Mudan;Jung, Inho;Kwon, Huiyoung;Cho, Eunbi;Jeon, Jieun;Yun, Jeanho;Lee, Young Choon;Kim, Dong Hyun;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Hippocampal synaptic dysfunction is a hallmark of Alzheimer's disease (AD). Many agents regulating hippocampal synaptic plasticity show an ameliorative effect on AD pathology, making them potential candidates for AD therapy. In the present study, we investigated spinosin as a regulating agent of synaptic plasticity in AD. Spinosin attenuated amyloid β (Aβ)-induced long-term potentiation (LTP) impairment, and improved plasmin activity and protein level in the hippocampi of 5XFAD mice, a transgenic AD mouse model. Moreover, the effect of spinosin on hippocampal LTP in 5XFAD mice was prevented by 6-aminocaproic acid, a plasmin inhibitor. These results suggest that spinosin improves synaptic function in the AD hippocampus by regulating plasmin activity.

Memory allocation at the neuronal and synaptic levels

  • HyoJin Park;Bong-Kiun Kaang
    • BMB Reports
    • /
    • v.57 no.4
    • /
    • pp.176-181
    • /
    • 2024
  • Memory allocation, which determines where memories are stored in specific neurons or synapses, has consistently been demonstrated to occur via specific mechanisms. Neuronal allocation studies have focused on the activated population of neurons and have shown that increased excitability via cAMP response element-binding protein (CREB) induces a bias toward memory-encoding neurons. Synaptic allocation suggests that synaptic tagging enables memory to be mediated through different synaptic strengthening mechanisms, even within a single neuron. In this review, we summarize the fundamental concepts of memory allocation at the neuronal and synaptic levels and discuss their potential interrelationships.