• Title/Summary/Keyword: Synaptic pattern

Search Result 23, Processing Time 0.035 seconds

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF

Induction of Oscillatory Firing Activity by TTX in Rat Cerebellar Purkinje Cells

  • Seo, Wha-Sook
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 1995
  • Intracellular recordings were obtained from Purkinje cells in rat cerebellar slices maintained in vitro. Adding tetrodotoxin to the superfusion solution produced a typical pattern of repetitive burst firing consisting of a cluster of action potentials followed by a long hyperpolarization. TTX-induced oscillatory activity was not due to modulation of membrane potential although underlying mechanisms for maintenance of oscillatory activity were influenced by membrane voltage. The mechanism of TTX-induced oscillation was not related to the presence or amplitude of $I_h$ and could still induce the oscillatory activity after blockade of $I_h$ by cesium. The result from an experiment in which QX-314 was injected intracellularly strongly suggested that TTX-induced oscillatory firing activity was due to blockade of post-synaptic $Na^{+}$ currents intrinsic to PCs.

  • PDF

A novel BACE inhibitor isolated from Eisenia bicyclis exhibits neuroprotective activity against β-amyloid toxicity

  • Lee, Jung Kwon;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.12
    • /
    • pp.38.1-38.9
    • /
    • 2018
  • Alzheimer's disease (AD) is a disturbing and advanced neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta ($A{\beta}$) and the hyperphosphorylation of tau proteins in the brain. The deposition of $A{\beta}$ aggregates triggers synaptic dysfunction, and neurodegeneration, which lead to cognitive disorders. Here, we found that FF isolated from an eatable perennial brown seaweed E.bicyclis protect against $A{\beta}$-induced neurotoxicity in neuroblastoma cells stably transfected with two amyloid precursor protein (APP) constructs: the APP695 cDNA (SH-SY5Y-APP695swe). The FF demonstrated strong inhibitory activity for ${\beta}$-secretase ($IC_{50}$ $16.1{\mu}M$) and its inhibition pattern was investigated using Lineweaver-Burk and Dixon plots, and found to be non-competitive. Then, we tested whether FF could inhibit production of $A{\beta}$ in SH-SY5Y-APP695swe. FF inhibited the production of $A{\beta}$ and soluble-APP, residue of APP from cleaved APP by ${\beta}$-secretase. Our data show that FF can inhibit the production of $A{\beta}$ and soluble-$APP{\beta}$ via inhibition of ${\beta}$-secretase activity. Taken together these results suggest that FF may be worthy of future study as an anti-AD treatment.

Design of a Spatial Filtering Neural Network for Extracting Map Symbols (공간필터를 이용한 지도기소 추출 신경회로망의 구성)

  • Gang, Ik-Tae;Kim, Uk-Hyeon;Kim, Gyeong-Ha;Kim, Yeong-Il;Lee, Geon-Gi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.2
    • /
    • pp.199-208
    • /
    • 1995
  • In this paper, a neural network architecture which can extract map symbols by being based on the results of physiological and neuropsychological studies on pattern recognition is proposed. This network is composed of multi-layers and synaptic activities of combining layers are implemented by spatial filters which approximate receptive fields of optic nerve cells. In pattern recognition which is followed by color classification for extracting of map symbols from input image, this network is searching for candidatepoints in lower layers (layer 2, 3) by using local features such as lines and end-points and then processing symbols recognition on those points in upper layer(layer 4) by using global features.

  • PDF

Direct Corticosteroid Modulation of GABAergic Neurons in the Anterior Hypothalamic Area of GAD65-eGFP Mice

  • Shin, Seung-Yub;Han, Tae-Hee;Lee, So-Yeong;Han, Seong-Kyu;Park, Jin-Bong;Erdelyi, Ferenc;Szabo, Gabor;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.163-169
    • /
    • 2011
  • Corticosterone is known to modulate GABAergic synaptic transmission in the hypothalamic paraventricular nucleus. However, the underlying receptor mechanisms are largely unknown. In the anterior hypothalamic area (AHA), the sympathoinhibitory center that project GABAergic neurons onto the PVN, we examined the expression of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) of GABAergic neurons using intact GAD65-eGFP transgenic mice, and the effects of corticosterone on the burst firing using adrenalectomized transgenic mice. GR or MR immunoreactivity was detected from the subpopulations of GABAergic neurons in the AHA. The AHA GABAergic neurons expressed mRNA of GR (42%), MR (38%) or both (8%). In addition, in brain slices incubated with corticosterone together with RU486 (MR-dominant group), the proportion of neurons showing a burst firing pattern was significantly higher than those in the slices incubated with vehicle, corticosterone, or corticosterone with spironolactone (GR-dominant group; 64 vs. 11~14%, p<0.01 by $x^2$-test). Taken together, the results show that the corticosteroid receptors are expressed on the GABAergic neurons in the AHA, and can mediate the corticosteroid-induced plasticity in the firing pattern of these neurons. This study newly provides the experimental evidence for the direct glucocorticoid modulation of GABAergic neurons in the AHA in the vicinity of the PVN.

Eine Structure of the Pineal Body of the Snapping Turtle (자라 송과체의 미세구조)

  • Choi, Jae-Kwon;Oh, Chang-Seok;Seol, Dong-Eun;Park, Sung-Sik;Cho, Young-Kook
    • Applied Microscopy
    • /
    • v.25 no.2
    • /
    • pp.39-52
    • /
    • 1995
  • Pinealocytes in the lower vertebrate are known to have photoreceptive function. These photoreceptor cells have been characterized morphologically in various species of lower vertebrates. No such ultrastructural studies, however, were reported in fresh water turtle. The purpose of this study is to characterize the pinealocytes and the phylogenetic evoluton of these cells is discussed in terms of functional analogy. I. Light microscopy: The pineal body was divided into incomplete lobules by connective tissue septa containing blood vessels, and parenchymal cells were arranged as irregular cords or follicular pattern. In the lobules, glandular lumina were present and contained often densely stained materials. II. Electron microscopy: The pineal parenchyma had three categories of cells: photoreceptor cells, supportive cells and nerve cells. The photoreceptor cells had darker cytoplasm compared to the supportive cells, and the enlarged apical cytoplasm(inner segment) containing abundant mitochondria and dense cored vescles protruded into the glandular lumen in which lamellar membrane stacks(outer segment), dense membranous materials, and cilia were present. Some of these lamellated membrane stacks appeared to be dege-nerating while others were apparently newly formed. Constricted neck portion of the photoreceptor cells contained longitudinally arranged abundant microtubules. centrioles and cross-striated rootlets. Cell body had well developed Golgi apparatus, abundant mitochondria, dense granules($0.5{\sim}1{\mu}m$), dense cored vesicles($70{\sim}100nm$), and rough endoplasmic reticulum occasionally with dense material within its cisterna. Basal portion of the photoreceptor cells had basal processes often with synaptic ribbons, which terminate in the complicated zone of cellular and neuronal processes. Synatpic ribbons often made contact with the nerve processes and the cell processes of neighboring cells. In some instances, these ribbons were noted free within the basal process and were also present at the basal cell mem-brane facing the basal lamina. Obvious nerve endings with clear and dense cored vesicles were observed among the parenchymal cells. Photoreceptor cells of the snapping turtle pineal body were generally similar in fine structure to those of other lower verterbrates reported previously, and suggested to have both photoreceptive and secretory functions which were modulated by pinealofugal and pinealopedal nerves. The supportive cells were characterized by having large dense granules($0.3{\sim}1{\mu}m$), abundant ribosomes, well developed Golgi apparatus and rough endoplasmic reticulum. These cells were furnished with microvilli on the luminal cell surfaces, and often had centrioles, striated rootlets, abundant filaments especially around the nucleus, and scattered microtubules. Some supportive cells had cell body close to the lumen and extended a long process reaching to basal lamina, which appeared to be a glial cell. Nerve cells within the parenchyma were difficult to identify, but some large cells located basally were suspected to be nerve cells, since they had synaptic ribbon contact with photoreceptor cells.

  • PDF

Differential Expression of NCAM-180 in the Olfactory System and Retina of the Rat

  • Hyeyoung Koo
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.259-267
    • /
    • 1999
  • The expression of the neural cell adhesion molecule-180 (NCAM-180), which accumulates at contact sites between cells and may be responsible for the stabilization of cell contacts, was studied in the olfactory system and retina of developing and adult rats. From embryonic day 12 onwards, which was the earliest stage examined, the NCAM-180 pathway directing to the presumptive olfactory bulb was observed. In later stages, olfactory neurons and fasciculating axons in the olfactory epithelium and nerve fiber layer and glomeruli of the olfactory bulb expressed NCAM-180. From postnatal day 0, immunolabelling pattern of the olfactory epithelium and olfactory bulb were the same as that during later stages. NCAM-180 immunoreactivity was present on differentiating retinal cells and persisted on those cells throughout adulthood. However, contrary to the olfactory nerve which remained detectable in the adult, the optic nerve was only transiently expressed with NCAM-180 and was no longer detectable in the adult. The presence of NCAM-180 in olfactory tissues suggests their possible role in pathfinding, differentiation, fasciculation and synaptic plasticity. The continued presence of NCAM-180 in the olfactory system examined may underlie its continuous cell turnover and regenerative capacity. The continuous expression of NCAM-180 in ganglion cells, bipolar cells and photoreceptor cells, also suggests potential regenerating capability and some plastic functions for these cells in the adult. Since the expression of NCAM-180 by the optic nerve was restricted to the period of special histogenetic events, for example, during axonal growth and synaptogenesis, it is possible that the lack of NCAM-180 in the adult optic nerve might cause a nonpermissive environment for the regeneration and result in regenerative failure of this system.

  • PDF

Expression of Calponin 3 in the Striatum Following 3-Nitropropionic Acid-induced Neurotoxicity (선조체에서 3-nitropropionic acid 투여 후 calponin 3의 발현 연구)

  • Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.125-130
    • /
    • 2013
  • Calponin 3 is an F-actin-binding protein and plays a key role in regulating spine plasticity and synaptic activity in neurons. Unlike the other subtypes, calponin 1 and 2, which are expressed in smooth and cardiac muscle cells, calponin 3 is highly expressed in the brain. The goal of this study was to elucidate the spatiotemporal expression pattern of calponin 3 following repeated administration of 3-nitropropionic acid in mice. The repeated administration of 3-nitropropionic acid generated necrotic neuronal cell death in the striatum. Calponin 3 was up-regulated in the neuroprotective penimbral region from 1.5 days after the last injection and thereafter. Double immunofluorescence study revealed that calponin 3 was induced in GFAP-positive astrocytes. These results suggest that calponin 3 induction in the neuroprotective penumbral area following 3-nitropropionic acid intoxication may play a key role in reactive astrogliosis in the striatum.

Altered Peripheral Nerve Excitability Properties in Acute and Subacute Supratentorial Ischemic Stroke (급성 및 아급성 천막상 허혈성 뇌졸중에서 발생하는 말초신경 흥분성 변화)

  • Seo, Jung Hwa;Ji, Ki Whan;Chung, Eun Joo;Kim, Sang Gin;Kim, Oeung Kyu;Paeing, Sung Hwa;Bae, Jong Seok
    • Annals of Clinical Neurophysiology
    • /
    • v.14 no.2
    • /
    • pp.64-71
    • /
    • 2012
  • Background: It is generally accepted that upper motor neuron (UMN) lesion can alter lower motor neuron (LMN) function by the plasticity of neural circuit. However there have been only few researches regarding the axonal excitability of LMN after UMN injury especially during the acute stage. The aim of this study was to investigate the nerve excitability properties of the LMNs following an acute to subacute supratentorial corticospinal tract lesion. Methods: An automated nerve excitability test (NET) using the threshold tracking technique was utilized to measure multiple excitability indices in median motor axons of 15 stroke patients and 20 controls. Testing of both paretic and non-paretic side was repeated twice, during the acute stage and subacute stage. The protocols calculated the strength-duration time constant from the duration-charge curve, parameters of threshold electrotonus (TE), the current-threshold relationship from sequential sub-threshold current, and the recovery cycle from sequential supra-threshold stimulation. Results: On the paretic side, compared with the control group, significant decline of superexcitablity and increase in the relative refractory period were observed during the subacute stage of stroke. Additionally, despite the absence of statistical significance, a mildly collapsing in ('fanning in') of the TE was found. Conclusions: Our results suggest that supratentorial brain lesions can affect peripheral axonal excitability even during the early stage. The NET pattern probably suggests background membrane depolarization of LMNs. These features could be associated with trans-synaptic regulation of UMNs to LMNs as one of the "neural plasticity" mechanisms in acute brain injury.

Stability Analysis of Limit Cycles on Continuous-time Cyclic Connection Neural Networks (연속시간 모델 순환결합형 신경회로망에서의 리미트사이클의 안정성 해석)

  • Park, Cheol-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.179-184
    • /
    • 2006
  • An intuitive understanding of the dynamic pattern generation in asymmetric networks may be considered an essential component in developing models for the dynamic information processing. It has been reported that the neural network with cyclic connections generates multiple limit cycles. The dynamics of discrete time network with cyclic connections has been investigated intensively. However, the dynamics of a cyclic connection neural network in continuous-time has not been well-known due to the considerable complexity involved in its calculation. In this paper, the dynamic behavior of a continuous-time cyclic connection neural network, in which each neuron is connected only to its nearest neurons with binary synaptic weights of ${\pm}1$, has been investigated. Furthermore, the dynamics and stability of the network have been analyzed using a piece-wise linear approximation.