• Title/Summary/Keyword: Symmetrical And Asymmetrical Inductance Tank Structures

Search Result 2, Processing Time 0.138 seconds

Optimized Phase Noise of LC VCO Using an Asymmetrical Inductance Tank

  • Yoon Jae-Ho;Shrestha Bhanu;Koh Ah-Rah;Kennedy Gary P.;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • This paper describes fully integrated low phase noise MMIC voltage controlled oscillators(VCOs). The Asymmetrical Inductance Tank VCO(AIT-VCO), which optimize the shortcoming of the previous tank's inductance optimization approach, has lower phase noise performance due to achieving higher equivalent parallel resistance and Q value of the tank. This VCO features an output power signal in the range of - 11.53 dBm and a tuning range of 261 MHz or 15.2 % of its operating frequency. This VCO exhibits a phase noise of - 117.3 dBc/Hz at a frequency offset of 100 kHz from carrier. A phase noise reduction of 15 dB was achieved relative to only one spiral inductor. The AIT-VCO achieved low very low figure of merit of -184.6 dBc/Hz. The die area, including buffers and bond pads, is $0.9{\times}0.9mm^2$.

Differential LC VCO with Enhanced Tank Structure and LC Filtering Techniques in InGaP/GaAs HBT Technology (InGaP/GaAs HBT 공정을 이용하여 향상된 탱크 구조와 LC 필터링 기술을 적용한 차동 LC 전압 제어 발진기 설계)

  • Lee, Sang-Yeol;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.177-182
    • /
    • 2007
  • This paper presents the InGaP/GaAs HBT differential LC VCO with low phase noise performance for adaptive feedback interference cancellation system(AF-lCS). The VCO is verified with enhanced tank structure including filtering technique. The output tuning range for proposed VCO using asymmetric inductor and symmetric capacitors withlow pass filtering technique is 207 MHz. The output powers are -6.68 including balun and cable loss. The phase noise of this VCO at 10 kHz, 100 kHz and 1 MHz are -102.02 dBc/Hz, -112.04 dBc/Hz and -130.40 dBc/Hz. The VCO is designed within total size of $0.9{\times}0.9mm^2$.