• Title/Summary/Keyword: Symmetric analysis

Search Result 1,065, Processing Time 0.022 seconds

Symmetric Adiabatic Logic Circuits against Differential Power Analysis

  • Choi, Byong-Deok;Kim, Kyung-Eun;Chung, Ki-Seok;Kim, Dong-Kyue
    • ETRI Journal
    • /
    • 제32권1호
    • /
    • pp.166-168
    • /
    • 2010
  • We investigate the possibility of using adiabatic logic as a countermeasure against differential power analysis (DPA) style attacks to make use of its energy efficiency. Like other dual-rail logics, adiabatic logic exhibits a current dependence on input data, which makes the system vulnerable to DPA. To resolve this issue, we propose a symmetric adiabatic logic in which the discharge paths are symmetric for data-independent parasitic capacitance, and the charges are shared between the output nodes and between the internal nodes, respectively, to prevent the circuit from depending on the previous input data.

PEI계 플라스틱 축대칭 부품의 사출 성형에 관한 연구 (Injection Moulding of Polyetherimide Axi-Symmetric Elements)

  • 하영욱;정태형;이범재
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.68-74
    • /
    • 2002
  • This research covers the development of axi-symmetric plastic elements for injection molding with insert steel such as high stiffness Sabot. The functional requirements of sabot are concentricity and fracture resistance about vertical and horizontal forces. For these, an analysis of characteristics of PEI(polyetherimide) polymer is performed by standard test specimen with accordance of ASTM test guidance. Moldflow analysis and simulation of injection molding process are carried out in order not only to estimate of the warpage but also to predict the characteristics of residual stresses which both product and structure of mold may have. A new vertical side injection machine and transverse mold have been constructed. Results of the measuring concentricity and fracture test after molding of sabot are satisfied to design specification over Cp $ratio{\geq}1.33$. Finally, this technique needs more research application to others axi-symmetric elements having different radius with insert steel md structure analysis from now on.

Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell

  • Ferezghi, Yaser Sadeghi;Sohrabi, Mohamadreza;Nezhad, Seyed Mojtaba Mosavi
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.679-698
    • /
    • 2020
  • In this paper, the meshless local Petrov-Galerkin (MLPG) method is developed for dynamic analysis of non-symmetric nanocomposite cylindrical shell equations of elastic wave motion with nonlinear grading patterns under shock loading. The mechanical properties of the nanocomposite cylinder are obtained based on a micro-mechanical model. In this study, four kinds of grading patterns are assumed for carbon nanotube mechanical properties. The displacements can be approximated using shape function so, the multiquadrics (MQ) Radial Basis Functions (RBF) are used as the shape function. In order to discretize the derived equations in time domains, the Newmark time approximation scheme with suitable time step is used. To demonstrate the accuracy of the present method for dynamic analysis, at the first a problem verifies with analytical solution and then the present method compares with the finite element method (FEM), finally, the present method verifies by using the element free Galerkin (EFG) method. The comparison shows the high capacity and accuracy of the present method in the dynamic analysis of cylindrical shells. The capability of the present method to dynamic analysis of non-symmetric nanocomposite cylindrical shell is demonstrated by dynamic analysis of the cylinder with different kinds of grading patterns and angle of nanocomposite reinforcements. The present method shows high accuracy, efficiency and capability to dynamic analysis of non-symmetric nanocomposite cylindrical shell, which it furnishes a ground for a more flexible design.

다양한 매질내의 손실특성 개선을 위한 크로스바 구조의 대칭 결합선로에 대한 해석 (Analysis of Symmetric Coupled Line with Crossbar Embedded Structure for Improved Attenuation Characteristics on the Various Lossy Media)

  • 김윤석
    • 대한전자공학회논문지TC
    • /
    • 제47권8호
    • /
    • pp.61-67
    • /
    • 2010
  • 일반적으로 MIS(도체-부도체-반도체)의 다층 구조로 이루어진 대칭 결합선로에 대한 해석 절차는 모드(even and odd) 해석에 기초한 특성임피던스와 전파상수를 추출함으로서 단층의 결합선로 해석 절차와 동일하다. 본 논문에서는 손실매질의 다층구조로 이루어진 마이크로 스트립선로의 손실특성의 개선을 위한 새로운 구조를 제안한다. MIS 구조로 된 전송선로의 Si와 SiO2층 사이에 0전위를 가진 도체를 일정한 간격의 주기적인 배열로 고안된 새로운 모델의 MIS구조에 대한 유한차분법을 이용한 해석방법이 사용된다. 특히 전송선로에 대한 유전체의 영향을 줄이기 위하여 0전위를 가진 주기적인 결합의 도체로 이루어진 구조가 시간영역의 신호를 통해 시험된다. 다양한 손실률을 가진 불완전 유전체에 따른 주파수 의존적인 추출된 전송선로 파라미터와 등가회로 파라미터가 주파수 함수로서 나타내진다. 특히 본 논문에서 제안한 새로운 구조의 불완전 유전체에 대한 전송선로 파라미터가 주파수 함수로 구해진다.

2차원 축대칭 전산해석을 이용한 초음속 로켓 제트 음향 해석 (Acoustic Analysis of Exhaust Supersonic Jet From a Rocket Motor Using 2-D Axis-symmetric Computational Analysis)

  • 양영록;전혁수
    • 한국항공우주학회지
    • /
    • 제48권9호
    • /
    • pp.725-730
    • /
    • 2020
  • 본 연구는 초음속 로켓 제트 후류 전산음향 해석에 소요되는 해석 시간을 줄이기 위해 수행되었다. 해석 시간을 줄이기 위한 방안으로 초음속 제트 후류를 2차원 축대칭 문제로 가정하고 전산음향 해석을 수행하였다. 전산음향 해석 결과, 음향하중 계측 결과와 유사한 결과를 보였다. 본 연구를 통해 2차원 축대칭 전산해석을 이용하여 초음속 로켓 제트 후류의 음향하중 예측이 가능함을 확인할 수 있었다.

Structural Analysis of a Composite Target-drone

  • Park, Yong-Bin;Nguyen, Khanh-Hung;Kweon, Jin-Hwe;Choi, Jin-Ho;Han, Jong-Su
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.84-91
    • /
    • 2011
  • A finite element analysis for the wing and landing gear of a composite target-drone air vehicle was performed. For the wing analysis, two load cases were considered: a 5g symmetric pull-up and a -1.5g symmetric push-over. For the landing gear analysis, a sinking velocity of 1.4 m/s at a 2g level landing condition was taken into account. MSC/NASTRAN and LS-DYNA were utilized for the static and dynamic analyses, respectively. Finite element results were verified by the static test of a prototype wing under a 6g symmetric pull-up condition. The test showed a 17% larger wing tip deflection than the finite element analysis. This difference is believed to come from the material and geometrical imperfections incurred during the manufacturing process.

Vibration analysis of wave motion in micropolar thermoviscoelastic plate

  • Kumar, Rajneesh;Partap, Geeta
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.861-875
    • /
    • 2011
  • The aim of the present article is to study the micropolar thermoelastic interactions in an infinite Kelvin-Voigt type viscoelastic thermally conducting plate. The coupled dynamic thermoelasticity and generalized theories of thermoelasticity, namely, Lord and Shulman's and Green and Lindsay's are employed by assuming the mechanical behaviour as dynamic to study the problem. The model has been simplified by using Helmholtz decomposition technique and the resulting equations have been solved by using variable separable method to obtain the secular equations in isolated mathematical conditions for homogeneous isotropic micropolar thermo-viscoelastic plate for symmetric and skew-symmetric wave modes. The dispersion curves, attenuation coefficients, amplitudes of stresses and temperature distribution for symmetric and skew-symmetric modes are computed numerically and presented graphically for a magnesium crystal.

Process Design for the Hot Forging of Asymmetric Rail to Symmetric Rail

  • Cho, Hae-Yong;Kim, Yong-Yun;Lee, Ki-Joung;Lee, Sung-Ho;Oh, Byung-Ki;Nam, Gi-Jung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1559-1564
    • /
    • 2004
  • The process design of hot forging, asymmetric to symmetric rib-web shaped steel, which is used for the turnout of express rails has been studied. Owing to the great difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single stage operation. The numerical simulation for hot forging of asymmetric shape to symmetric shape was carried out by using commercial FEM code, DEFORMTM-2D. For comparison with the simulation results, a experiment of flow analysis using plasticine was also carried out. The results of the flow experiment showed good agreement with those of the simulation.

란쥬반형 압전 진동자를 이용한 선형 초음파 모터의 특성연구 (A Study on the Characteristics of Linear Ultrasonic Motor Using Langevin type Piezoelectic Transducer)

  • 최명일;박태곤;김명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.137-139
    • /
    • 2003
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

  • PDF

Analysis of a Symmetric Active Cell Balancer with a Multi-winding Transformer

  • Jeon, Seonwoo;Kim, Myungchin;Bae, Sungwoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1812-1820
    • /
    • 2017
  • This paper analyzes a symmetric active cell balancer for a battery management system. The considered cell balancer uses a forward converter in which the circuit structure is symmetric. This cell-balancing method uses fewer switches and is simpler than the previously proposed active cell-balancing circuits. Active power switches of this cell-balancing circuit operate simultaneously with the same pulse width modulation signals. Therefore, this cell-balancing circuit requires less time to be balanced than a previous bidirectional-forward-converter-based cell balancer. This paper analyzes the operational principles and modes of this cell balancer with computer-based circuit simulation results as well as experimental results in which each unbalanced cell is equalized with this cell balancer. The maximum power transfer efficiency of the investigated cell balancer was 87.5% from the experimental results. In addition to the experimental and analytical results, this paper presents the performance of this symmetric active cell-balancing method.