• Title/Summary/Keyword: Symbol error rate

Search Result 371, Processing Time 0.036 seconds

Performance Evaluation of Convolution Coding OFDM Systems (컨볼루션 코딩 OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.294-301
    • /
    • 2013
  • OFDM technique uses multiple sub-carriers for the data transmission. Therefore, bit error rate increases because of inter-carrier interference caused by nonlinear high power amplifier and carrier frequency offset. Wireless OFDM transmission over multi path fading channels is characterized by small transmission gain in multiple sub-carrier frequency interval. Therefore bit error rate increases because of burst errors. Inter-leaver and convolution error control coding are effective for the reduction of this burst error. Pilot symbol is used for the channel estimation in OFDM systems. However, imperfect channel estimates in this systems degrade the performance. The performance of this convolution coding OFDM systems using inter-leaver, gauged by the bit error rate, is analyzed considering the nonlinear high power amplifier, carrier frequency offset and channel estimation error.

Analysis of Block FEC Symbol Size's Effect On Transmission Efficiency and Energy Consumption over Wireless Sensor Networks (무선 센서 네트워크에서 전송 효율과 에너지 소비에 대한 블록 FEC 심볼 크기 영향 분석)

  • Ahn, Jong-Suk;Yoon, Jong-Hyuk;Lee, Young-Su
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.803-812
    • /
    • 2006
  • This paper analytically evaluates the FEC(Forward Error Correction) symbol size's effect on the performance and energy consumption of 802.11 protocol with the block FEC algorithm over WSN(Wireless Sensor Network). Since the basic recovery unit of block FEC algorithms is symbols not bits, the FEC symbol size affects the packet correction rate even with the same amount of FEC check bits over a given WSN channel. Precisely, when the same amount of FEC check bits are allocated, the small-size symbols are effective over channels with frequent short bursts of propagation errors while the large ones are good at remedying the long rare bursts. To estimate the effect of the FEC symbol site, the paper at first models the WSN channel with Gilbert model based on real packet traces collected over TIP50CM sensor nodes and measures the energy consumed for encoding and decoding the RS (Reed-Solomon) code with various symbol sizes. Based on the WSN channel model and each RS code's energy expenditure, it analytically calculates the transmission efficiency and power consumption of 802.11 equipped with RS code. The computational analysis combined with real experimental data shows that the RS symbol size makes a difference of up to 4.2% in the transmission efficiency and 35% in energy consumption even with the same amount of FEC check bits.

Performance Evaluation of a Novel Chaos Transceiver for the High Level Modulation (고레벨 변조를 위한 새로운 카오스 송수신기의 성능 평가)

  • Lee, Jun-Hyun;Ryu, Heung-Gyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Security of chaos communication system that has characteristic of sensitive initial conditions is superior to digital communication systems, but BER(Bit Error Rate) performance is evaluatied badly. So, studies in order to improve the BER performance is important. existing studies, BER performance of proposed chaos transceiver is possible to improve than the CDSK(Correlation Delay Shift Keying) system because it has characteristic that has very few addition elements like noise signal except for the desired signal. Chaos communication system has many symbols because it spreads according to characteristic of chaos map. Therefore, study that can have the good data rate in chaos communication system is required. Information bits of existing chaos modulation system are modulated as -1 and 1 on the basis of BPSK system. However, instead of BPSK system, if chaos communication system is applied high level modulation systems such as QPSK system and 16QAM system, it is possible to have good data rate because more data are transmitted at a time. In the paper, when QPSK system and 16QAM system are applied to proposed chaos transceiver in existing study, we evaluate the SER(Symbol Error Rate) performance and compare the each performance. Also, when QPSK system and 16QAM system are applied to proposed chaos transceiver, we evaluate the anti-jamming performance of proposed system.

Performance Analysis of New LMMSE Channel Interpolation Scheme Based on the LTE Sidelink System in V2V Environments (V2V 환경에서 LTE 기반 사이드링크 시스템의 새로운 LMMSE 채널 보간 기법에 대한 성능 분석)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.15-23
    • /
    • 2016
  • To support the telematics and infotainment services, vehicle-to-everything (V2X) communication requires a robust and reliable network. To do this, the 3rd Generation Partnership Project (3GPP) has recently developed V2X communication. For reliable communication, accurate channel estimation should be done. However, because vehicle speed is very fast, radio channel is rapidly changed with time. Therefore, it is difficult to accurately estimate the channel. In this paper, we propose the new linear minimum mean square error (LMMSE) channel interpolation scheme based on the Long Term Evolution (LTE) sidelink system in vehicle-to-vehicle (V2V) environments. In our proposed reduced decision error (RDE) channel estimation scheme, LMMSE channel estimation is applied in the pilot symbol, and then in the data symbol, smoothing and LMMSE channel interpolation scheme is applied. After that, time and frequency domain averaging are applied to obtain the whole channel frequency response. In addition, the LMMSE equalizer of the receiver side can reduce the error propagation due to the decision error. Therefore, it is possible to detect the reliable data. Analysis and simulation results demonstrate that the proposed scheme outperforms currently conventional schemes in normalized mean square error (NMSE) and bit error rate (BER).

HSRC-OQPSK Transceiver Architectures for High-Speed Data Communications using Differential Coding for 4-Phase Ambiguity (고속 데이터 통신을 위한 HSRC-OQPSK 4위상 모호 해결 차동 코딩 송수신기 구조)

  • Yeo, Hyeop-Goo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.705-708
    • /
    • 2010
  • Recently, HSRC (Half-Symbol-Rate-Carrier) OQPSK (Offset Quadrature Phase Shift Keying) signaling which reduces the bandwidth of transmitted signal for high-speed data communications has been introduced. Since the signal is based on QPSK modulation, it also has the characteristics of QPSK signal. This paper introduces architectures of the transceiver using differential coding to resolve the 4-phase ambiguity problem of the HSRC-QOPSK signaling for high-speed data communications. In addition, this paper proves the functionality of the transceiver with differential coding and shows the BER (bit-error-rate) performance of the transceiver by simulations.

  • PDF

Link Adaptive MAC protocol for Wi-Fi (Wi-Fi 네트워크를 위한 매체적응 MAC 프로토콜)

  • Kim, Byung-Seo;Han, Se-Won;Ahn, Hong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.69-74
    • /
    • 2009
  • A novel protocol is proposed to achieve sub-carner-based rate adaptation in OFDM-based wireless systems. The protocol requires the addition of one OFDM symbol to the Clear-to-Send (CTS) packet defined in the IEEE 802.11 standard_ When receiving a Ready-To-Send (RTS) packet, the receiver determines the number of bits to be allocated in each sub-carrier through channel estimation. This decision is delivered to the sender using an additional OFDM symbol. That is, bit-allocation over sub-carriers is achieved using only one additional OFDM symbol. The protocol also provides an error recovery process to synchronize the bit-allocation information between the sender and receiver. The protocol enhances the channel efficiency in spite of the overhead of one additional OFDM symbol.

  • PDF

A Study on The Correction of The Channel Equalizer Decision Error Using Channel Estimator (채널추정기를 이용한 등화기 결정오류 정정 알고리즘에 관한 연구)

  • Kim, Seon-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.18-24
    • /
    • 2017
  • The process of transmitting messages through a medium with a limited bandwidth or channel dispersion inevitably involves signal distortion and noise influxes, resulting in the degradation of transmission quality due to the inter-symbol interference and additional noise, which increases the error rate of the received symbols. The main role of the equalizer is to remove the channel distortion and noise from the received signal to recover the transmitted messages. A number of studies on the equalizer composed of a combination of linear filter and error control coding have shown that they played a key role in enhancing the transmission efficiency, which is essential for digital communication. This paper proposes a new algorithm to correct the residual symbol errors in the message signal. In general, equalizer performance improvement algorithms were developed to improve the initial convergence speed or steady-state error. In this paper, however, the equalizer input signal was reconstructed using the equalizer decision symbols and the channel estimates to directly correct the decision errors by analyzing the statistical characteristics of the difference signal between the actual received signal and the reconstructed signal.

Performance of M-ary PPM UWB Radio in Fading Channels

  • Mohammed, Abdel-Hafez;Alagoz, Fatih;Hamalainen, Matti
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.365-373
    • /
    • 2003
  • This paper investigates the performance of M-ary pulse position modulation (PPM) multiuser ultra-wideband (UWB) communication systems in terms of symbol error rate (SER) over fading and additive white Gaussian noise (AWGN) channel. Based on Gaussian approximation for the multiple access interference, an expression for the signal-to-noise ratio (SNR) is derived for the UWB system. This expression is used to derive exact SER expressions for coherent UWB receivers. The effect of pulse selection on the SER of multiuser UWB system is studied. In addition to rectangular pulse, the 2nd derivative Gaussian waveform and Rayleigh pulses were considered. We show that the system capacity and/or SER performance can be significantly increased by using the monocycle pulse in fading channels.

On the Performance of an Orthogonal Frequency Division Multiplexing System in a Mobile Radio Channel (이동 통신 채널에서 직교 주파수 분할 다중 시스템의 성능 연구)

  • 김윤희;송익호;김상우;방영조
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.55-59
    • /
    • 1996
  • In this paper, we first analyze the influence of interference due to the time variation and delay spread of the mobile channel on an orthogonal frequency division multiplexing (OFDM) system. With the result, we obtain the bit error rate performance of the 16-QAM OFDM system. Second, we investigate the performance of the Reed-Solomon (RS) coded 16-QAM OFDM system when the number of subcarriers varies. In the investigation, we assume that the information transmission rate and the total bandwidth expansion due to coding, guard interval, and the number of subcarriers are fixed. Under this condition, it is observed that there are optimum numbers of subcarriers that minimize the post decoding symbol error probability of RS code for various channel states.

  • PDF

A study on the iverse modeling of communication channel by HOS (HOS를 이용한 통신 채널의 역 모델링에 관한 연구)

  • 임성각;진용옥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1274-1282
    • /
    • 1996
  • This paper deals with an inverse modeling of nonminimum phase communication channel utilizing the HOS (High Order Statistics) of the received signal. After the communication channel is separated into the minimum phase and maximum phase components, the inverse modeling is performed independently. The performance superiority is confirmed by monte-carlo computer simulation in comparison with the traditional CMA (Constant Modulus Algorithm) method. By utilizing the proposed algorithm employing the HOS of the received signal, the inverse frequency characteristics of the channel can be obtained withoug transmitted signal in digital communication. This algorithm is required in preprocessing or postprocessing in order to remove the channel effect, and effective in the self adaptive equalizer which can minimize the bit error rate or symbol error rate in the recovry of received signal.

  • PDF