• Title/Summary/Keyword: Symbiotic potential

Search Result 34, Processing Time 0.01 seconds

Medium Concentration Influencing Growth of the Entomopathogenic Nematode Heterorhabditis bacteriophora and its Symbiotic Bacterium Photorhabdus luminescens

  • Yoo, Sun-Kyun;Brown, Ian;Cohen, Nancy;Gaugler, Randy
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.644-648
    • /
    • 2001
  • The biological control potential of entomopathogenic nematodes (EPN) can be enhanced by improved culture efficiency. Optimization of the media is a key factor for improving in vitro mass production of entomopathogenic nematodes. This study reports the effect of medium concentration. The medium is a combination of carbohydrates, lipids, proteins, sats, and growth factors, on the growth of Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus liminescens. The overall optimal medium concentration for nematode recovery, hermaphrodite size, bacterial mass, infective juveniles (IJs) yield, and doubling time was 84 g/l. At this concentration rate, the doubling time of IJs production and the biomass of symbiotic bacteria was 1.6 days and 12.8 g/l, respectively. The maximum yield of $2.4{\times}{10^5}IJs/ml$ was attained within a one-generation cycle (eight days). The yield coefficient was $2.8{\times}{10^6}$ IJs/g medium, and the maximum productivity was $3.1{\times}{10^7}$ IJs per day. Medium concentration affected two independent factors, recovery and hermaphrodite size, which in turn influenced the final yield.

  • PDF

Isolation and Identification of a Symbiotic Bacterium from Steinernema carpocapsae

  • Park, Sun-Ho;Yu, Yeon-Su
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.12-16
    • /
    • 1999
  • Xenorhabdus nematophilus sp., an insect-pathogenic bacterium, was newly isolated from Korean entomopathogenic nematode of Steinernema carpocapsae, which can be used as a useful bioinsecticide. Primary and secondary form variants of Xenorhabdus nematophilus were observed when cultured in vitro. Primary form variants adsorbed bromothymol blue, while secondary form did not. However, many other characters of two variants were very similar. The variants were all rod-shaped and cell size was highly variable ranging from 0.5 by 2.0 ${\mu}$m to 1.0 by 5.0 ${\mu}$m. Both produced highly toxic substances and killed the insect larva within 20∼38 hr, indicating that insect pathogenicity of Xenorhabdus is not directly associated with its phase variation. In addition, cell-free culture supernatant of Xenorhabdus was sufficient to kill the insect larva by injecting it ito insect hemolymph; however, cell-harboring culture broth was more effective for killing the insect. The use of Xenorhabdus nematophilus may provide a potential alternative to Bacillus thuringiensis (Bt) toxins.

  • PDF

Sustainable Use of Marine Microorganisms

  • Lee Yoo Kyung;Lee Jung Hyun;Kwon Kae Kyoung;Lee Hong Kum
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.94-99
    • /
    • 2002
  • The oceans cover about $71\%$ of the Earth's crust and contain nearly 300,000 described species. Free-living bacteria in the sea and symbiotic bacteria of marine invertebrates are proving to be valuable sources of useful bioactive compounds. Marine sponges, in particular, which contain diverse communities of bacteria, produce many classes of compounds that are unique to the marine environment. Uncultured microorganisms are commonly believed to represent $99.9\%$ of the whole microbial community. They have been investigated for the possibility of isolating and over-expressing genes in viable microorganisms. Strict symbiotic species that have been adapted to the host are candidate unculturable species. With the enormous potential for discovery, development, and market value of marine derived compounds, supply of the products is a major limiting factor for further development.

  • PDF

Characteristics of Indigenous Rhizobium to Korean Soils -I. Symbiotic Potentials of Bradyrhizobium japonicum Populations and Their Colony Morphological Characteristics in Yeongnam Soils (우리나라 토착근류균(土着根瘤菌)의 제(諸) 특성(特性) 연구(硏究) -I. 영남지역(嶺南地域) 토착(土着) 대두근류균(大豆根瘤菌)의 접종효과(接種效果)와 취락형태적(聚落形態的) 분포특성(分布特性))

  • Kang, Ui-Gum;Somasegaran, Padma;Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 1990
  • Soybean [Glycin max (L.)] cv. Jangbaekkong was inoculated with 5 cultivated- and 5 uncultivated upland soils, in Yeongnam area, as soil inoculum and NifTAL peat inoculum as standard for soil inoculum potentials by Bradyrhizobium japonicum. 120 Bradyrhizobium japonicum isolates out of the soil populations were scored of three colony morphologies, designed "Dry", "Wet", and "Dry/Wet", and symbiotic effectiveness between "Dry" and "Wet" was compared. The results obtained were summarized as follows: 1. Indigenous populations of B. japonicum were above $10^4cells/g$. soil at the cultivated upland soils but were a few at the uncultivated upland soils except a colluvivum, orchard previously, in Yeongnam area. 2. Inoculum potentials of the cultivated upland soils were higher than the NifTAL inoculum and generally, nodule mass compensated nodule number for symbiotic effectiveness of soil populations. 3. Colony morphologies of soil populations showed the different proportions of "Dry" and "Wet" so that "Dry" types were dominant at the cultivated upland soils while "Wet" types at the uncultivated upland soils. 4. "Dry" colony morphology significantly exhibited higher symbiotic effectiveness than "Wet" types in nodule fresh weight, shoot dry weight, and shoot dry weight/nodule fresh weight. Therefore, as long as soil inoculum potentials, the growth of soybean at the cultivated upland soils could presumedly be affected by soil populations of Bradyrhizobium japonicum of "Dry" colony morphology.

  • PDF

Symbiotic Potential of Bradyrhizobium japonicum Indigenous to Arable Land in Southern Parts of Korea (남부지방 농경지 Bradyrhizobium japonicum의 질소고정잠재능)

  • Kang, Ui-Gum
    • Applied Biological Chemistry
    • /
    • v.41 no.3
    • /
    • pp.247-252
    • /
    • 1998
  • To obtain the basic information for suitable use of soybean-Bradyrhizobium japonicum symbiosis, on soybean cv. Danweonkong and Namhaekong the symbiotic potential of B. japonicum indigenous to plain upland (PU), plain paddy(PP), and mountainous upland(MU) soils in southern part of Korea were surveyed and discussed. Populations of B. japonicum in soils were the highest in MU soils with $5.7{\times}10^4\;cells/g.soil$ followed by PU with $5.0{\times}10^4$ and PP soils with $4.0{\times}10^3\;cells/g.soil$. Shoot dry weight at flowering stage and grain yields at harvesting stage, which mutually showed an high correlation $(P{\leqq}0.001)$, were high in the order of PU > MU > PP soil inocula. Amongst PU soils, Namhae acid Seonsan soils were prominent inocula for shoot dry weight and Kimhae for grain yields at P 0.05, respectively. In cases of nodule number and nodule mass surveyed at the flowering stage, shoot dry weight gave an higher correlation with the latter $(r=0.439^*)$ than the former $(r=0.383^*);$ grain yields with the former $(r=0.505^{**})$ that flue latter $(r=0.449^{**})$. In comparison with Namhaekong showed 1.7 and 1.4 fold higher values in shoot dry weight and grain yields per nodule mass, respectively.

  • PDF

The Impact of Gut Microbiota in Human Health and Diseases: Implication for Therapeutic Potential

  • Ha, Eun-Mi
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.155-173
    • /
    • 2011
  • Humans have and hold 100 trillion intestinal bacteria that are essential for health. For millions of years human-microorganisms interaction has co-evolved, and maintained close symbiotic relationship. Gut bacteria contributes to human health and metabolism, and humans provides the optimum nutrition-rich environment for bacteria. What is the mechanism of the host distinguishing the intestinal bacteria as its cohabiting partner and what kind of benefits does the gut microbiota provide the human are the fundamental questions to be asked and solved in order to make human life a higher quality. This review explains the physiological relationship and mutualism between the host and gut microorganism, and highlights the potential therapeutic approach for treating diseases, maintaining and improving health based on these correlations.

Toxicological Analysis of the Entomopathogenic Nematode, Steinernema carpocapsae, and the Symbiotic Bacteria, Xenorhabdus nematophilus on Beneficial Insects and Mammals (유용곤충과 포유류에 대한 곤충병원선충(Steinernema carpocapsae)과 공생세균(Xenorhabdus nematophilus)의 독성)

  • Park, Young-Jin;Kim, Mi-Kyung;Kim, Jin;Yang, Kyung-Hyung;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.40 no.3
    • /
    • pp.259-264
    • /
    • 2001
  • Toxicological studies of two potential biological control agents, the entomopathogenic nematode (Steinernema carpocapsae) and the symbiotic bacteria (Xenorhabdus nematophilus) were conducted against two beneficial insects and one mammal species. Two microbial agents varied in their toxicities between two insect species: an ant, Pristomyrmex pungens, and silkworm, Bombyx mori. In oral toxicity test, the symbiotic bacteria resulted in significant lethal [half lethal concentration of $1.4$\times$10^3$colony-forming units (cfu)/ml] on the ants, while they gave little lethal effect (half lethal concentration of more than $10^{8}$ cfu/ml) on the silkworms. The nematodes, however, gave significant lethal effect [half lethal concentration of 4 infected juveniles (IJs)/ml] on the silkworms, while they did little lethal effect (half lethal concentration of 150,000 IJs/ml) on the ants in topical assays. Both the nematodes and the bacteria did not give lethal effect to the albino rats, Rattus norvegicus, when they were fed orally into the rats. Also, any of these microbial agents were not detected in the internal organs of the treated rats.

  • PDF

MEDIA DEVELOPMENT FOR MASS PRODUCTION OF ENTOMOPATHOGENIC NEMTOIDE HETERORHABDITIS BACTERIOPHORA AS AN INSECTICIDE

  • Yoo, Sun-Kyun;Cho, Sung-Young;Kim, Seung-Jai;Randy Gaugler
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.107-110
    • /
    • 2001
  • The biological control potential of entomopathogenic nematodes (EPN) can be enhanced by improved culture efficiency. Optimization of media is a key factor for improving in vitro mass production of entomopathogenic nematodes. EPN yield was dependant of complex medium concentration, of which mixture is carbohydrates, lipids, proteins, salts, and growth factors, on the growth of Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus luminescensLipids.

  • PDF

Chromosome numbers of Euphorbia pekinensis complex in Far East Asia

  • Park, Ki-Ryong;Kurosawa, Takahide;Seo, Min-Gyeong;Lee, Bo-Eun;Ahn, Soo-Kyeong
    • Korean Journal of Plant Taxonomy
    • /
    • v.47 no.4
    • /
    • pp.304-307
    • /
    • 2017
  • We report somatic chromosome numbers for three species belonging to the Euphorbia pekinensis complex distributed in Far East Asia. In E. pekinensis populations distributed in Korea, 2n = 28 and 56 were found, while the Japanese native E. lasiocaula was also found at 2n = 28 and 56 and the Japanese endemic E. sinanensis was found at 2n = 20. Based on the number of chromosomes, E. lasiocaula distributed in Japan supports treatment as a variety of E. pekinensis rather than as a different species, while E. sinanensis should be recognized as a distinct species rather than as a variety of E. pekinensis. In the same populations of E. pekinensis and E. lasiocaula, diploid and tetraploid individuals were found, and the diversity of these chromosome numbers was consistent with the morphological diversity of these populations, suggesting the future evolutionary potential of this species.

IL-17 and IL-21: Their Immunobiology and Therapeutic Potentials

  • Choong-Hyun Koh;Byung-Seok Kim;Chang-Yuil Kang;Yeonseok Chung;Hyungseok Seo
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.2.1-2.24
    • /
    • 2024
  • Studies over the last 2 decades have identified IL-17 and IL-21 as key cytokines in the modulation of a wide range of immune responses. IL-17 serves as a critical defender against bacterial and fungal pathogens, while maintaining symbiotic relationships with commensal microbiota. However, alterations in its levels can lead to chronic inflammation and autoimmunity. IL-21, on the other hand, bridges the adaptive and innate immune responses, and its imbalance is implicated in autoimmune diseases and cancer, highlighting its important role in both health and disease. Delving into the intricacies of these cytokines not only opens new avenues for understanding the immune system, but also promises innovative advances in the development of therapeutic strategies for numerous diseases. In this review, we will discuss an updated view of the immunobiology and therapeutic potential of IL-17 and IL-21.