• Title/Summary/Keyword: Switching speed

Search Result 1,041, Processing Time 0.034 seconds

Mixed-mode simulation of transient characteristics of 4H-SiC DMOSFETs (Mixed-mode simulation을 이용한 4H-SiC DMOSFETs의 채널 길이에 따른 transient 특성 분석)

  • Kang, Min-Seok;Choi, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.131-131
    • /
    • 2009
  • Silicon Carbide (SiC) is a material with a wide bandgap (3.26eV), a high critical electric field (~2.3MV/cm), a and a high bulk electron mobility ($\sim900cm^2/Vs$). These electronic properties allow high breakdown voltage, high-speed switching capability, and high temperature operation compared to Si devices. Although various SiC DMOSFET structures have been reported so far for optimizing performances, the effect of channel dimension on the switching performance of SiC DMOSFETs has not been extensively examined. This paper studies different channel dimensons ($L_{CH}$ : $0.5{\mu}m$, $1\;{\mu}m$, $1.5\;{\mu}m$) and their effect on the the device transient characteristics. The key design parameters for SiC DMOSFETs have been optimized and a physics-based two-dimensional (2-D) mixed device and circuit simulator by Silvaco Inc. has been used to understand the relationship. with the switching characteristics. To investigate transient characteristic of the device, mixed-mode simulation has been performed, where the solution of the basic transport equations for the 2-D device structures is directly embedded into the solution procedure for the circuit equations. We observe an increase in the turn-on and turn-off time with increasing the channel length. The switching time in 4H-SiC DMOSFETs have been found to be seriously affected by the various intrinsic parasitic components, such as gate-source capacitance and channel resistance. The intrinsic parasitic components relate to the delay time required for the carrier transit from source to drain. Therefore, improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the gate-source capacitance and channel resistance.

  • PDF

A SRM driving with voltage and switching angle for maximum torque/efficiency and minimum torque ripple (최대 토크/효율 및 최소 토크맥동을 위한 스위칭각/전압에 의한 SRM 운전)

  • 차현록;김현덕;김광현;임영철;장도현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.309-317
    • /
    • 2000
  • This paper presents the switching angle and voltage to maximize torque/efficiency and minimize torque ripple in the 4-phase 6-poles Switched Reluctance Motor(SRM). SRM drive has high saturation and nonlinear characteristics of inductance. So we cannot hard to find optimal condition by using analytic method. Therefore it is hard to find the operating the switching angle and voltage through the approximated analysis and computer simulation by using SIMULINK according to the speed and torque required by load. From the results, we can say that the optimum average voltage is determined by the load only and the speed is determined by the optimum turn-on/off angle only. And the maximum efficiency and minimum torque ripple depend on switching angle, not on voltage. And then one-chip microcontroller controls the switching angle and voltage of an asymmetrical inverter in the SRM driver. This drive method, which is expect that the driving methods, which are maximizing torque/efficiency and minimizing torque ripple, will be suitable for the electric vehicle, the industrial application and household appliances.

  • PDF

Study of the optical switching properties in waveguide type Au/$SiO_2$ nanocomposite film using prism coupler (프리즘 커플러를 이용한 도파로형 Au/$SiO_2$ 나노 혼합박막의 광 스위칭 특성 연구)

  • Cho, Sung-Hun;Lee, Soon-Il;Lee, Taek-Sung;Kim, Won-Mok;Lee, Kyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.76-76
    • /
    • 2008
  • The resonance properties due to the surface plasmon(SP) excitation of metal nanoparticles make the nanocomposite films promising for various applications such as optical switching devices. In spite of the well-known ultra-sensitive operation of optical switches based on a guided wave, the application of nanocomposite film(NC) has inherent limitation originating from the excessive optical loss related with the surface plasmon resonance(SPR). In this study, we addressed this problem and present the experimental and theoretical analysis on the pump-probe optical switching in prism-coupled Au(1 vol.%):$SiO_2$ nanocomposite waveguide film. The guided mode was successfully generated using a near infrared probe beam of 1550 nm and modulated with an external pump beam of 532 nm close to the SPR wavelength. We extend our approach to ultra-fast operation using a pulsed laser with 5 ns pulse width. To improve the switching speed through the reduction in thermal loading effect accompanied by the resonant absorption of pump beam light, we adopted a metallic film as a coupling layer instead of low-index dielectric layer between the high-index SF10 prism and NC slab waveguide. We observed great enhancement in switching speed for the case of using metallic coupling layer, and founded a distinct difference in origin of optical nonlinearities induced during switching operation using cw and ns laser.

  • PDF

A Switching Technique for Common Mode Voltage Reduction of 2-Level Inverter

  • Yun Hwan-Kyun;Kim Lee-Hun;Kim Jun-Ho;Won Chung-Yuen;Choi Gi-Su;Bae Joung-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.438-442
    • /
    • 2001
  • Much attention has given to EMI effects created by variable speed ac drive system. This paper focuses on the switching technique to mitigate common mode voltage. Zero switching states of inverter control invoke large common mode voltage. Using inversed carrier wave, zero switching states are removed. In addition, proposed technique is easy to apply to existing 2-level inverter design. And common mode mitigation technique for sinusoidal PWM is also presented. Proposed switching technique is implemented with a 2.2kw 1735rpm induction motor.

  • PDF

Topological design for packet network with hop-count the minimum degree ordering method (경유교환기 수의 제약을 고려한 패킷 통신망 설계에 관한 연구)

  • 윤문길;주성순;전경표
    • Korean Management Science Review
    • /
    • v.12 no.2
    • /
    • pp.89-103
    • /
    • 1995
  • Traditionally, the scarce and expensive resources in communication networks has been the bandwidth of transmission facilities; accordingly, the techniques used for networking and switching have been chosen so as to optimize the efficient use of that resource. One of them is the packet switching for data communications, which is much different from the circuit switching. It allows multiple users to share the data network facilities and bandwidth, rather than providing specific amounts of dedicated bandwidth to each users. One main challenge therefore has been to design and build cost-effective packet switching networks. In this paper, we develop a mathematical programming medel and heuristic algorithm for designing the packet switching networks with hop-count constraints. To develop an efficient heuristic, we apply the Lagrangian relaxation method. Some valid inequalities, which have been known as the tight constraints, are considered to improve the bound for Lagrangian sub-problem. The computational experiments show that the performance of the proposed heuristic is very satisfactory in both the speed and the quality of design solutions generated.

  • PDF

Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

  • Han, Di;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1489-1498
    • /
    • 2015
  • Gallium nitride (GaN)-based power switching devices, such as high-electron-mobility transistors (HEMT), provide significant performance improvements in terms of faster switching speed, zero reverse recovery, and lower on-state resistance compared with conventional silicon (Si) metal-oxide-semiconductor field-effect transistors (MOSFET). These benefits of GaN HEMTs further lead to low loss, high switching frequency, and high power density converters. Through simulation and experimentation, this research thoroughly contributes to the understanding of performance characterization including the efficiency, loss distribution, and thermal behavior of a 160-W GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations, as compared with the state-of-the-art Si technology. Original suggestions on design considerations to optimize the GaN converter performance are also provided.

Optimal Switching Pattern of SHE PWM for VSI-IM Drive System (VSI-IM 구동 시스템을 위한 SHE PWM의 최적 스위칭 패턴)

  • 이일형;정동화;이윤종
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1829-1838
    • /
    • 1989
  • This paper is proposed one method of the exact optimal switching pattern of Selected Harmonic Elimination(SHE) Pulse Width Modulation(PWM). It defined Harmonic Elimination Band (HEB) at Constant Voltage(CV) and sought all solutions which are included HEB. Then, it calculated the Generalized Klirr Factor(GKF) beling to this solution and decided the optimal switching pattern which is minimized GKF. This optimal switching solution is used as initial condition of Newto Raphson(NR) method of decided easily switching pattern at Variable Voltage(VV). We desined the inverter by Power Transister(PTR) and implemented variable speed drive of Induction Motor(IM) in order to verify the validity of this theoretical proposition, then shown this results by comparison and analysis.

  • PDF

The Converter of High Efficiency 48V 400A for Electronic Exchange (전자교환기용 고효율 48V 400A급 전력변환장치의 시작)

  • 박성우;서기영;전중함;김부국;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.60-63
    • /
    • 1998
  • The widely used power supply (Switched Mode Power Supply : SMPS) as a source in order to stabilize direct current for electronics or communication systems has merits, when it is compared to the existing source for stability, such as high efficiency, small size, light weight by means of switching process of the semiconductor device which controls the flow of power. However, due to existence of inductors and capacitors used for charging energy, the source part in electronic or communication systems hasn't reached the speed, that is supposed to get, for achieving smaller size and lighter weight. In order to get smallness in size, it is necessary to increase switching frequency. And that makes devices for measuring energy smaller. Nevertheless, the rise switching frequency brings increases in switching loss, inductor loss, and power loss. Also, the occurrence of surge and noise caused by high frequency switching is getting higher. The resonant converter has been considered as one of methods that give solutions for the problems of SMPS and that method have been paid attention as a source technology in electronics and communication.

  • PDF

A Measurement of Switching Surge Voltage Using Inverter devices (인버터의 스위칭 서지전압 측정)

  • Kim, Jong-Gyeum;Jeong, Jong-Ho;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.1
    • /
    • pp.14-21
    • /
    • 2004
  • Most adjustable-speed drives (ASDs) designed to operate low voltage induction motors incorporate voltage-source inverters (VSIs), which create motor voltages at high switching frequencies. The motor leads used to connect an ASD to a motor can behave like transmission lines for voltage pulses, which can be reflected at the motor terminals. The resulting oscillatory transient, known as the long-lead effect, can stress and consequently degrade the stator insulation system of a motor. This paper describes the results of tests to 1) determine the correlation between peak motor voltage and the length of motor leads and 2) determine the correlation between peak motor voltage and the switching frequency of the ASD Insulation failures like this usually are caused by voltage surges. Voltage surges are often the result of switching power circuits, lightning strikes, capacitor discharges and solid-state power devices.

The Originating Characteristics of Periodic Impulse Noises in the Data Communication System by Distribution Line Carrier Method (배전선반송 데이타통신에서의 주기적 임펄스노이즈의 발생특성)

  • 최순만;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.75-82
    • /
    • 1994
  • The existence of peroodic impulse noises in distribution line carrier (DLC) communication system is known to be the most serious obstacle for improving DLC communication quality in reliability and capacity. From the spectral points, impulse noises can be divided into baseband type and modulation type the noise width of whichs are much different each other. With each nose type, this study presents the basic characteristics in relation to what they originate from and how their spectrum properties are revealed. The baseband type impulse noise is normally caused from thyristor circuit running with low switching speed and the modulation type noise from the circuit of switching power supply. The base wave of modulation noise is shown to be the pulsuatic charging current to primary condenser in switching power circuit. The study result indicates also that placing the DLC carrier frequency away the band predominated by modulated noise especially from RCC type switching power circuit is very important in DLC design.

  • PDF