• Title/Summary/Keyword: Switching frequency

Search Result 2,052, Processing Time 0.027 seconds

Series Load Resonant Soft-Switching PWM High Frequency Inverter with Auxiliary Active Edge-Resonant Snubber

  • Saha, Bishwajit;Kim, Hun-Ho;Han, Ho-Dong;Kwon, Soon-Kurl;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.278-280
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbingcircuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft- switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

Induction Heated Load Resonant Tank High Frequency Inverter with Asymmetrical Auxiliary Active Edge-Resonant Soft-Switching Scheme

  • Saha Bishwajit;Fathy Khairy;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.200-202
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbing circuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft-switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

A Novel Soft-Switching PWM DC/DC Converter with DC Rail Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Parasitic Components

  • ;이현우
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 학술대회 논문집
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. One topology of proposed DC-DC converters is composed of a typical voltage source-fed full-bridge high frequency PWM inverter using DC busline side series power semiconductor switching devices with the aid of a parallel capacitive lossless snubber. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. It is proved that the more the switching frequency of full-bridge soft switching inverter increases, the more soft-switching PWM DC-DC converter with a hish frequency transformer link has remarkable advantages for its efficiency and power density as compared with the conventional hard-switching PWM inverter type DC-DC converter

  • PDF

Optimal Design of a DC-DC Converter for Photovoltaic Generation

  • Kwon, Soon-Kurl
    • 조명전기설비학회논문지
    • /
    • 제25권3호
    • /
    • pp.40-49
    • /
    • 2011
  • This paper presents novel circuit topology of half-bridge soft-switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed, half-bridge high frequency PWM inverter with a high frequency planar transformer link PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode-equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC bus lines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, high switching frequency IGBTs can actually be selected in the frequency range of 40[kHz] under the principle of soft-switching. The performance evaluations of the experimental setup are illustrated practically.

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

Design of a Digital PWM Controller for a Soft Switching SEPIC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • 제4권3호
    • /
    • pp.152-160
    • /
    • 2004
  • This paper presents analysis, modeling, and design of a low-harmonic, isolated, active-clamped SEPIC for future avionics applications. Simpler converter dynamics, high switching frequency, zero voltage-Transition-PWM switching, and a single-layer transformer construction result. This paper describes complete design of a digital controller for a high-frequency switching power supply. Guidelines for the minimum required resolution of the analog-to-digital converter, the pulse-width modulator, and the fixed-point computational unit is derived. A design example based on a SEPIC converter operating at the high switching frequency is presented. The controller design is based on direct digital design approach and standard root-locus techniques.

비자성 유도가영시스템을 위한 IGBT를 이용한 고속스위칭 구동에 관한 연구 (The Study on High-Frequency Switching Drive Method Using IGBT For Non-Magnetic Induction Heating System)

  • 김정태;권경안;정윤철;박병욱
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.24-26
    • /
    • 1998
  • A new high frequency switching drive method using IGBT is proposed for non-magnetic induction heating system. Using this method, the switching and conduction losses of the switching devices can be reduced. In addition, since IGBT cosl is lower than MOS-FET one, the system cosl can be remarkably pared down. The prototype induction heating system with 1.2㎾ power consumption is builted and tested to verify the operation of the proposed high frequency switching drive method.

  • PDF

새로운 유도가열용 소프트 스위칭 고주파 인버터 (Soft Switching High Frequency Inverter for New Induction Heating)

  • 김칠용;문상필;김영문;김해재;류재엽;김수욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.119-124
    • /
    • 2007
  • This research presented the new zero-current switching pulse width modulation SEPP(Single Ended Push-Pull)high frequency inverter for solving the problem of the zero-current SEPP high frequency inverter circuit which is using widely in the practical application of an induction heating apparatus, the soft switching operation and power control are impossible when the lowest power supply in the zero-current switching pulse width modulation SEPP high frequency inverter. The inverter circuit which is attempted by on-off operation of a switch has the reduction effect of the power loss due to a soft switching and a high frequency switching. And it confirmed that the power regulation is possible continuously from 0.25[kW] until 2.84[kW] in the case the duty rate(D) changes from 0.08 to 0.3 under zero-current switching operating by a dissymmetry pulse width modulating control and the power conversion efficiency comes true the efficiency of 95[%]. Due to the result above, the ZCS PWM SEPP high frequency inverter will be effective as sources of an induction heating apparatus.

  • PDF

소형산업용 인덕션 히터의 최대에너지 전달에 관한 연구 (A Study on the Maximum Energy Transfer of a Small Industrial Induction Heater)

  • 이정빈;김태명;김영완
    • 전기전자학회논문지
    • /
    • 제25권3호
    • /
    • pp.534-539
    • /
    • 2021
  • 본 논문에서는 유도 가열코일의 인덕턴스 변화 환경에서 스위칭주파수를 가변하여 최대 가열 전력이 전달될 수 있는 유도 가열 방식을 제안하였다. 가열코일내 피 가열체 종류 및 가열코일과의 근접도에 따라 공진회로의 공진주파수가 변화하게 되며, 공진주파수와 스위칭주파수 관계에 따라 유도가열기 소자의 파손 또는 손실이 발생하여 최대 전력 전달이 어려울 수 있다. 공진주파수의 변화에 따른 가열 전력을 감지하여 최대 전력 전달이 유지되도록 스위칭주파수를 가변하도록 하였다. 공진 주파수 변화에 대응하는 스위칭주파수 가변에 따라 요구하는 출력 변화 범위내로 제어될 수 있는 제안된 방식의 결과를 통하여 거의 일정한 출력전력(0.43 dB 이내) 전달이 가능한 스위칭주파수 가변특성을 갖는 유도가열기의 전력 효율성을 확보할 수 있었다.

High-Frequency GaN HEMTs Based Point-of-Load Synchronous Buck Converter with Zero-Voltage Switching

  • Lee, Woongkul;Han, Di;Morris, Casey T.;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.601-609
    • /
    • 2017
  • Gallium nitride (GaN) power switching devices are promising candidates for high switching frequency and high efficiency power conversion due to their fast switching, low on-state resistance, and high-temperature operation capability. In order to facilitate the use of these new devices better, it is required to investigate the device characteristics and performance in detail preferably by comparing with various conventional silicon (Si) devices. This paper presents a comprehensive study of GaN high electron mobility transistor (HEMT) based non-isolated point-of-load (POL) synchronous buck converter operating at 2.7 MHz with a high step-down ratio (24 V to 3.3 V). The characteristics and performance of GaN HEMT and three different Si devices are analytically investigated and the optimal operating point for GaN HEMT is discussed. Zero-voltage switching (ZVS) is implemented to minimize switching loss in high switching frequency operation. The prototype circuit and experimental data support the validity of analytical and simulation results.