• 제목/요약/키워드: Switching device

검색결과 1,022건 처리시간 0.031초

전력 Switching 소자를 압전트랜스로 구동하는 방법 (The Driving Method of Power Switching Device Using Pizoelectric Transformer)

  • 황민규;이상균;이재춘;최준영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1324-1326
    • /
    • 1998
  • To drive motor or heating machine, it needs the electric power system like the apparatus of inverter. This electric power system obviously comprises power switching devices and drivers to run them. And this system has the topology comprised one/many arm(s), - each arm has high side switching device and low side switching device. Transformer, photocoupler, and HVIC having functions of isolation and level shift which are important thing to drive high side switching device are used as component of drivers in conventional apparatus. Piezoelectric transformers are proposed in this paper, and applied to drive high side swiching device. Through experiments, the possiblities of driving high side switching device are presented and the problems are mooted concurrently. But, we also consider a counterplan for solving the mooted trouble issues.

  • PDF

전력 Switching 소자를 압전트랜스로 구동하는 방법 (The Driving Method of Power Switching Device Using Pizoelectric Transformer)

  • 황민규;이상균;이재춘
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2458-2460
    • /
    • 1998
  • To drive motor or heating machine, it needs the electric power system like the apparatus of inverter. This electric power system obviously comprises power switching devices and drivers to run them. And this system has the topology comprised one/many arm(s), - each arm has high side switching device and low side switching device. Transformer, photocoupler, and HVIC having functions of isolation and level shift which are important thing to drive high side switching device are used as component of drivers in conventional apparatus. Piezoelectric transformers are proposed in this paper, and applied to drive high side swiching device. Through experiments, the possiblities of driving high side switching device are presented and the problems are mooted concurrently. But, we also consider a counterplan for solving the mooted trouble issues.

  • PDF

스너버 회로를 위한 TVS 소자의 활용 연구 (A Study on the application of TVS for snubber)

  • 이완윤;정교범
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 추계학술대회 논문집
    • /
    • pp.227-230
    • /
    • 2002
  • The switching device in an inductive circuit is stressed by the over-voltage at the turn-off time. Thus if the peak value of the over-voltage is not properly limited, the switching device may be broken. Therefore, the snubber circuit should be added to protect the switching device from the over-voltage. The circuit designer must be familiar with the design of the snubber This paper tests the possibility that TVS instead of the conventional snubber can be applied to the protection circuit of the switching device without using the complicated design equations, and shows that the rating of TVS can be easily selected by considering only several parameters of TVS. The experimental results show the reduced switching voltage of the switching device at the turn-off time.

  • PDF

Switching Characteristics of Amorphous GeSe TFT for Switching Device Application

  • 남기현;김장한;조원주;정홍배
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.403-404
    • /
    • 2012
  • We fabricated TFT devices with the GeSe channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is high. Based on the experiments, we draw the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF

Electrical Switching Characteristics of Thin Film Transistor with Amorphous Chalcogenide Channel

  • 남기현;김장한;정홍배
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.280-281
    • /
    • 2011
  • We fabricated the devices of TFT type with the amorphous chalcogenide channel. A single device consists of a Pt source and drain, a Ti glue layer and a GeSe chalcogenide channel layer on SiO2/Si substrate which worked as the gate. We confirmed the drain current with variations of gate bias and channel size. The I-V curves of the switching device are shown in Fig. 1. The channel of the device always contains amorphous state, but can be programmed into two states with different threshold voltages (Vth). In each state, the device shows a normal Ovonic switching behavior. Below Vth (OFF state), the current is low, but once the biasing voltage is greater than Vth (ON state), the current increases dramatically and the ON-OFF ratio is about 4 order. Based on the experiments, we contained the conclusion that the gate voltage can enhance the drain current, and the electric field by the drain voltage affects the amorphous-amorphous transition. The switching device always contains the amorphous state and never exhibits the Ohmic behavior of the crystalline state.

  • PDF

전기광학적 정궤환을 이용한 광쌍안정소자 (Optical Bistable Device Using Poistive Electro-Optic Feedback)

  • 이창희;김석윤;갑상영;이수영
    • 대한전자공학회논문지
    • /
    • 제25권1호
    • /
    • pp.94-100
    • /
    • 1988
  • To improve the switching time of active optical bistable devices, we propose an active optical bistable device that consists of a diode laser, a transistor, and a photodetector. By implementing the proposed device we realize the optical bistable device with a 5 nanosecond switching time. This is the fastest switching time among the hybrid type optical bistable devices. It is also experimentally demonstrated that the proposed device may be used in an optical disc pick up.

  • PDF

Resistive Switching Characteristics of Amorphous GeSe ReRAM without Metalic Filaments Conduction

  • 남기현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.368.1-368.1
    • /
    • 2014
  • We proposed amorphous GeSe-based ReRAM device of metal-insulator-metal (M-I-M) structure. The operation characteristics of memory device occured unipolar switching characteristics. By introducing the concepts of valance-alternation-pairs (VAPs) and chalcogen vacancies, the unipolar resistive switching operation had been explained. In addition, the current transport behavior were analyzed with space charge effect of VAPs, Schottky emission in metal/GeSe interface and P-F emission by GeSe bulk trap in mind. The GeSe ReRAM device of M-I-M structure indicated the stable memory switching characteristics. Furthermore, excellent stability, endurance and retention characteristics were also verified.

  • PDF

신개념 스위칭 소자를 위한 모트-절연체 금속 전이 기술 (Mott-Insulator Metal Switching Technology for New Concept Devices)

  • 김현탁;노태문
    • 전자통신동향분석
    • /
    • 제36권3호
    • /
    • pp.34-40
    • /
    • 2021
  • For developing a switching device of a new concept that cannot be implemented with a semiconductor device, we introduce the Mott insulator-metal transition (IMT) phenomenon occurring out of the semiconductor regime, such as the temperature-driven IMT, the electric-field or voltage-driven IMT, the negative differential resistance (NDR)-IMT switching generated at constant current, and the NDR-based IMT-oscillation. Moreover, the possibilities of new concept IMT switching devices are briefly explained.

단상 계통 연계형 풀브릿지 인버터의 스위치 손실 모의 및 분석 (Simulation and Analysis of Losses of Switching Device for Single Grid-connected Full Bridge Inverter)

  • 손명수;임현지;조영훈
    • 전력전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.294-297
    • /
    • 2018
  • This paper analyzes the losses of the switching device for a full bridge inverter connected to the grid. As the development of power conversion system, losses are dominant factors in judging the efficiency of a system. The losses of a switching device can be divided into switching loss and conduction loss, both of which can be estimated by analyzing periodic switching waveform. The switching loss is generated when the switch is turned on and off, while the conduction loss is generated when the switch is turned on. The estimated losses of the MOSFET switch are compared with the simulation results.

PRAM Switching Device By Using Current Pulse Modulation

  • Lee, Seong-Hyun;Gil, Gyu-Hyun;Lee, Jung-Min;Song, Yun-Heup
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.384-384
    • /
    • 2012
  • PRAM switching device by using current pulse modulation was investigated to verify its possibility for 3D architecture. In this work, two phase change materials connected in series having a different crystallization temperature are used. Its structural for different phase change material was evaluated by electrical resistance. We confirmed that Germanium-Antimony-Tellurium (GST) alloy and Germanium- Copper-Tellurium (GCT) alloy material were selected according to crystallization temperature, ${\sim}180^{\circ}C$ for switching and ${\sim}240^{\circ}C$ for memory devices, respectively. From this research, it is expected that phase change switching device could have advantages of process in terms of material similarity and structural simplification.

  • PDF