• 제목/요약/키워드: Switching converter

검색결과 2,064건 처리시간 0.026초

Optimal Design of a DC-DC Converter for Photovoltaic Generation

  • Kwon, Soon-Kurl
    • 조명전기설비학회논문지
    • /
    • 제25권3호
    • /
    • pp.40-49
    • /
    • 2011
  • This paper presents novel circuit topology of half-bridge soft-switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed, half-bridge high frequency PWM inverter with a high frequency planar transformer link PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode-equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC bus lines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, high switching frequency IGBTs can actually be selected in the frequency range of 40[kHz] under the principle of soft-switching. The performance evaluations of the experimental setup are illustrated practically.

무손실 스너버적용 고주파 소프트 스위칭 Forward 컨버터 (High Frequency Soft Switching Forward DC/DC Converter Using Non-dissipative Snubber)

  • 최해영;김은수;변영복;김철수;김윤호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.614-617
    • /
    • 1999
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved zero voltage switching forward dc/dc converter is proposed. The proposed converter is constructed by using energy recovery snubbers in parallel with the main switches and output diodes of the conventional forward dc/dc converter. Due to the use of the energy recovery snubbers in the primary and secondary side, the proposed converter achieves zero-voltage-switching turn-off without switching losses for switching devices and output rectification diodes. The complete operating principles and experimental results will be presented.

  • PDF

새로운 무손실 스너버를 이용한 부분공진형 고효율 $3\phi$ AC-DC 부스터 컨버터 (A New Partial Resonant Switching $3\phi$ Boost Converter with High Efficiency Using Lossless Snubber)

  • 전종함;서기영;이현우
    • 전자공학회논문지S
    • /
    • 제34S권9호
    • /
    • pp.118-125
    • /
    • 1997
  • This paper proposed a new partial resonant 3.PHI. AC-DC boost converter of high efficiency using lossless snubber. The proposed converter, DCM (Discontinuous Current Mode) has a merit of simple controlled circuit because the input current control discontinuously. But turned off switching loss and stress of the switching device increase when the switch turned off at the peak of current. Therefore, the paper improves efficiency by adopting the PRS$^{2}$(Partial Resonant Soft Switching) in 3.PHI. AC-DC boost converter and makes the unity power factor. The PRS$^{2}$ is reduced a current/voltage stresses of switching devices. Also, a DCMPRS$^{2}$M(Discontinuous Conduction Mode Partial Resonant Soft Switching Method) appear the current and voltage equation of this circuit. The paepr examine in a 3.PHI. AC-DC boost converter and show the result of that.

  • PDF

A New High Power Factor ZVT-ZCT AC-DC Boost Converter

  • Ting, Naim Suleyman
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1539-1548
    • /
    • 2018
  • This paper introduces a new soft switched AC-DC boost converter with power factor correction (PFC). In the introduced converter, all devices are turned on and off under soft switching (SS). The main switch is turned on under zero voltage transition (ZVT) and turned off under zero current transition (ZCT). The main diode is turned on under zero voltage switching (ZVS) and turned off under zero current switching (ZCS). Meanwhile, there is not any current or voltage stress on the main devices. Besides, the auxiliary switch is turned on under ZCS and turned off under ZVS. The detailed theoretical analysis of the converter is presented, and also theoretical analysis is verified by a prototype with 100 kHz and 500 W. Also, the proposed converter has 99.8% power factor and 97.5% total efficiency at soft switching operation.

양방향 풀-브릿지 DC-DC 컨버터를 위한 새로운 소프트 스위칭 기법 (A New Soft Switching Technique for Bi-directional Power Flow, Full-bridge DC-DC Converter)

  • 송유진;박석인;정학근;한수빈;정봉만
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 학술대회 논문집
    • /
    • pp.251-255
    • /
    • 2005
  • This paper proposes a new soft switching technique for a phase-shift controlled bi-directional DC-DC converter. The described converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. A new soft switching technique is proposed, which guarantees soft switching over wide range (no load to full load) without any additional circuit components. In the proposed switching scheme, the switch pairs in the diagonal position of the converter each are turned on/off simultaneously by the switching signals with a variable duty ratio depending on the phase shift amount, and the converter is operated without freewheeling interval.

  • PDF

단일전력단으로 구성된 역률 보상 AC/DC Full-Bridge Converter의 소프트 스위칭 기법에 대한 비교 연구 (A Comparative Study on Soft Switching Method of Single Stage AC/DC Full-Bridge Converter)

  • 이성룡;전칠환;정채규
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.694-697
    • /
    • 2001
  • A optimal soft switching technique for A/DC full bridge converter is proposed. variable soft switching single stage AC/DC full bridge converter with unit power factor are presented in this paper. Using soft switching, we can reduce a switching losses. As a result, achieving good power factor and achieving a good efficiency. We search a optimal soft switching technique in this paper and to verify the theoretical analysis of the presented AC/DC full bridge converter, a design example is given with its Pspice and Psim simulation and experimental results.

  • PDF

보조 회로를 활용한 ZCZVT 소프트 스위칭 플라이백 컨버터 (A Zero-Current-Zero-Voltage-Transition Flyback Converter using Auxiliary Circuit)

  • 주현승;최현칠
    • 전력전자학회논문지
    • /
    • 제23권6호
    • /
    • pp.397-402
    • /
    • 2018
  • In this study, a high-efficiency flyback converter that uses a soft-switching auxiliary circuit is proposed. The structure of the proposed converter adds an inductor, switch, diode, and capacitor to the conventional flyback converter. The switch in the auxiliary circuit and the main switch are turned on and off under soft-switching conditions. Therefore, the switching losses of the proposed flyback converter are considerably smaller than those of conventional flyback converters. The performance of the proposed flyback converter is validated by experiments on a 100 W single-output flyback converter prototype, and design guidelines are presented.

소프트 스위칭 방식의 보조 회로를 갖는 영전류 및 영전압 스위칭 양방향 DC-DC 컨버터 (A Family of Zero Current and Zero Voltage Switching Bidirectional DC-DC Converter with Soft Switched Auxiliary Circuit)

  • 이일호;김준구;김재형;원충연;정용채
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.438-439
    • /
    • 2011
  • In this paper, soft switching bidirectional DC-DC converter is proposed. The proposed topology is added two auxiliary switches, two resonant capacitors and one resonant inductor to convectional bidirectional DC-DC converter. Therefore, this proposed topology can reduce switching loss of each power switch by ZVS (Zero Voltage Switching) and ZCS (Zero Current Switching). We have performed mode analysis, simulation and experiment for the proposed topology.

  • PDF

도통손실을 감소시킨 강압형 영전류-영전압 컨버터에 관한 연구 (A Study on the BUCK ZC-ZVS Converter with Reduced Conduction Losses)

  • 이요섭;이원석;이성백
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권12호
    • /
    • pp.686-691
    • /
    • 1999
  • In a switching power supply, the high frequency switching makes the passive components small, but the losses and the stresses of switches are increased by the switching frequency. Therefore, zero crossing technology using resonant is used to improve defect in high switching. In generally, zero crossing switching consists of Zero Current Switching(ZCS) and Zero Voltage Switching(ZVS). This paper proposes A Buck ZC-ZVS Converter with Reduced Conduction Losses. Comparing with a conventional Buck ZC-ZVS Converter, the proposed converter operates with the smaller rated power. This is achieved by changing the auxiliary switch position, which reduces its rating power. Simulation results using Pspice program about test circuit with rated 160W(30V, 5.3A) at 30kHz and experiment result under same condition were described in the paper.

  • PDF

새로운 DCM-ZVS DC-DC 컨버터에 관한 연구 (A Study on New DCM-ZVS DC-DC Converter)

  • 곽동걸;심재선
    • 전기전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.131-137
    • /
    • 2012
  • 본 논문에서는 영전압 스위칭(ZVS)과 전류불연속 모드(DCM)에 의한 새로운 고효율의 DC-DC 컨버터에 대해 연구된다. 일반적으로 고효율의 컨버터를 만들기 위해서는 전력변환기내에 사용된 반도체 스위칭 소자의 손실을 최소화하여 이루어진다. 제안한 컨버터는 DCM에 의하여 스위치의 턴-온 동작을 영전류 스위칭(ZCS)으로 만들고, 또한 새로운 유사공진 회로를 접목하여 컨버터의 고효율을 실현시킨다. 제안한 컨버터에 사용된 제어용 스위칭 소자들은 유사공진 기법에 의해 소프트 스위칭, 즉 ZVS와 ZCS으로 동작시키고, 이에 따른 제어용 스위칭 소자들은 전압과 전류의 스트레스 없이 동작한다. 그 결과 제안한 컨버터는 스위칭 손실의 저감에 의해 고효율로 구동된다. 제안한 DCM-ZVS 컨버터의 소프트 스위칭 동작과 시스템 효율은 디지털 시뮬레이션과 실험결과를 통해 그 타당성이 입증된다.