• Title/Summary/Keyword: Switching controller

Search Result 828, Processing Time 0.033 seconds

Repetitive Controller for High Power UPS System with Low Switching Frequency (낮은 스위칭 주파수를 갖는 대용량 무정전 전원장치를 위한 반복제어기)

  • Lee, Taeyeong;Cho, Younghoon;KIM, JISU;BYEON, YONGSEOP
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.477-478
    • /
    • 2016
  • This paper introduces a repetitive controller in low switching frequency applications. Generally, A high power UPS system has a high rated current. And the system usually consist of high power IGBT has a tail current. So the high power UPS system operates in low switching frequency because of this tail current. The repetitive controller improve THD of output voltage or current by reducing the steady state error. The effect of the repetitive controller is proved by simulations.

  • PDF

Automatic P/PI Speed Controller Design for Industry Servo Drives (산업용 서보 구동 시스템을 위한 자동 P/PI 속도 제어기 설계)

  • 배상규;석줄기;김경태;이동춘
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.12
    • /
    • pp.616-623
    • /
    • 2003
  • Conventional P/PI speed controller of today's servo drives should be manually tuned the controller switching set-point by trial-and-errors, which may translate the drive system down-time and loss of productivity. The adjustable drive performance is heavily dependent on the quality of the expert knowledge and becomes inadequate in applications where the operating conditions change in a wide range, i.e., tracking command, acceleration/deceleration time, and load disturbances. In this paper, the demands on simple controls/setup are discussed for industry servo drives. Analyzing the frequency content of motor torque command, P/PI control mode switching is automatically performed with some prior knowledge of the mechanical dynamics. The dynamic performance of the proposed scheme assures a desired tracking response curve with minimal oscillation and settling time over the whole operating conditions. For comprehensive comparison of traditional P/PI control scheme, extensive test is carried out on actual servo system.

A Study on the Fault-Tolerant and Bumpless Switching Control for Boiler Systems in the Power Plant (발전용 보일러 시스템의 이상허용 및 과도상태의 유연한 제어에 관한 연구)

  • Kwon, Oh-Kyu;Lee, Young-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1037-1040
    • /
    • 1998
  • In this research a fault-tolerant and bumpless switching control is proposed for boiler systems used in the power plants. Firstly, three operating points are selected to control the nonlinear boiler through the full operational range, and the $H_{\infty}$ loop shaping controller and the model-based predictive controller(MBPC) are designed. To prevent the windup and bump problems which are caused by the actuator saturation and the controller switching, an anti-windup and bumpless transfer technique is adopted to the $H_{\infty}$ loop shaping controller. Also the constrained gain-scheduling technique is applied to MBPC to achieve the same objective. Secondly, the fault-tolerant control technique is proposed to continue the control action without stopping the boiler operation even in case of some faults. Through various simulation studies, the performances of the proposed control techniques are demonstrated.

  • PDF

A Study on the Digital Control of a ZVS-Full Bridge Converter (ZVS-Full Bridge Converter의 디지털 제어에 관한 연구)

  • 최현식;이재학
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.96-102
    • /
    • 1998
  • This paper describes the design of the digital controller for Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS). Although digital control techniques are widely used in the area of inverters and motor drives, their use for the control of high-frequency switching power supply is still rare. Therefore, this paper presents design method of digital controller of Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS) and compares with conventional analog controller. The controller design is optimized by running computer simulation with the MATLAB numerical calculation package.

  • PDF

A Study on the Fault-Tolerant and Bumpless Switching Control for Boiler Systems in the Power Plant (발전용 보일러 시스템의 이상허용 및 과도상태의 유연한 제어에 관한 연구)

  • Kwon, Oh-Kyu;Lee, Young-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.689-692
    • /
    • 1998
  • In this research a fault-tolerant and bumpless switching control is proposed for boiler systems used in the power plants. Firstly, three operating points are selected to control the nonlinear boiler through the full operational range, and the $H_{\infty}$ loop shaping controller and the model-based predictive controller(MBPC) are designed. To prevent the windup and bump problems which are caused by the actuator saturation and the controller switching, an anti-windup and bump less transfer technique is adopted to the $H_{\infty}$ loop shaping controller. Also the constrained gain-scheduling technique is applied to MBPC to achieve the same objective. Secondly, the fault-tolerant control technique is proposed to continue the control action without stopping the boiler operation even in case of some faults. Through various simulation studies, the performances of the proposed control techniques are demonstrated.

  • PDF

Fuzzy Controlled ZVS Asymmetrical PWM Full-bridge DC-DC Converter for Constant load High Power Applications

  • Marikkannan., A;Manikandan., B.V
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1235-1244
    • /
    • 2017
  • This paper proposes a fuzzy logic controlled new topology of high voltage gain zero voltage switching (ZVS) asymmetrical PWM full-bridge DC-DC boost converter for constant load and high power applications. The APWM full-bridge stage provides high voltage gain and soft-switching characteristics increase the efficiency and reduce the switching losses. Fuzzy logic controller (FLC) improves the performance and dynamic characteristics of the proposed converter. A comparison with a classical proportional-integral (PI) controller demonstrates the high performances of the proposed technique in terms of effective output voltage regulation under different operating conditions. Simulation is done by integrating two different simulation platforms $PSIM^{(R)}$ and $Matlab^{(R)}/Simulink^{(R)}$ by using SimCoupler tool of $PSIM^{(R)}$. Experimental results using 120W load have been provided to validate the results.

A Study en the Fault-Tolerant and Bumpless Switching Control for Boiler Systems in the Power Plant (발전용 보일러 시스템의 이상허용 및 과도상태의 유연한 제어에 관한 연구)

  • Kwon, Oh-Kyu;Lee, Young-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.369-372
    • /
    • 1998
  • In this research a fault-tolerant and bumpless switching control is proposed for boiler systems used in the power plants. Firstly, three operating points are selected to control the nonlinear boiler through the full operational range, and the $H_{\infty}$ loop shaping controller and the model-based predictive controller(MBPC) are designed. To prevent the windup and bump problems which are caused by the actuator saturation and the controller switching, an anti-windup and bumpless transfer technique is adopted to the $H_{\infty}$ loop shaping controller. Also the constrained gain-scheduling technique is applied to MBPC to achieve the same objective. Secondly, the fault-tolerant control technique is proposed to continue the control action without stopping the boiler operation even in case of some faults. Through various simulation studies, the performances of the proposed control techniques are demonstrated.

  • PDF

NEURAL NETWORK CONTROLLER FOR A PERMANENT MAGNET GENERATOR APPLIED IN WIND ENERGY CONVERSION SYSTEM

  • Eskander Mona N.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.656-659
    • /
    • 2001
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system(WECS) employing a permanent magnet synchronous generator, is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-times of the switching devices of the two converters are supplied by the developed neural network(NN). The effect of sudden changes in wind speed ,and/or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simultaneously with the developed neural network controller. The results proved also the fast response and robustness of the proposed control system.

  • PDF

A Study on The Bang-Bang Controller Applied to Electrical Vehicle (전기차량에 적용한 Bang-Bang 제어기 연구)

  • Bae, Jong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1089-1094
    • /
    • 2016
  • In order to establish the robust controller design technique of series wound motor driver system. This paper proposes a method of Bang-Bang controller using a series wound motor driver system under improperly variable load. A Bang-Bang controller structure is simpler than the structure of PID plus Bang-Bang controller. This paper shows that a general 8 bits microprocessor is used efficiently implementing such an algorithm. The calculation time of software is extremely small when compared with conventional PID plus Bang-Bang controller. Both nonlinear operating characteristics of digital switching elements and describing function methods are used for the analysis and synthesis. Real time implementation of Bang-Bang controller is achieved. Concept design strategy of the control and PWM waveform generation algorithms are presented in the paper.

The Operation of SRM through mathematical equations from the maximum torque (최대 토크 해석 방정식에 의한 SRM의 구동)

  • 서종윤
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.725-728
    • /
    • 2000
  • This paper presents the switching angle and voltage for maximizing torque of 4-phase 6-poles SRM. The switching angle and voltages was determined through the approximated analysis and computer simulation by using SIMULINK according to the speed and torque required by load but we used new analytic equation from maximum torque characteristic And then one-chp micro-controller controls the switching angle and voltage of an asymmetrical inverter in the SRM driver. Also we expects that this method reduce micro-controller load and realize approximated real time control

  • PDF