• Title/Summary/Keyword: Switch-control

Search Result 1,253, Processing Time 0.036 seconds

Comparisom of Control Algorithm for Simultaneous Control of DC-DC Converter (DC-DC 컨버터 동시제어의 제어 알고리즘 비교)

  • Park, Hyo-Sik;Han, Woo-Yong;Lee, Gong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.163-168
    • /
    • 2002
  • This paper presents the comparison results of control algorithm for the simultaneous control of a multi output converter system that controls, simultaneously and independently, the separate Buck converter and Boost converter with the different specification by one DSP digital controller. As two separate converters are regulated by only one DSP, it is possible to achieve the simple digital control circuit for regulating the multi output DC-DC converter. By setting the software switch state, PI and Fuzzy controller can be applied as a controller for each converter without any change of hardware. Also, it is included the control characteristics comparison between PI and Fuzzy controller. The control characteristics of each PWM DC-DC converter is validated by experimental results.

A Study on the Standardization for Railway Route Control Locking Logic (철도 진로 제어 연동 로직의 표준화를 위한 연구)

  • Jeong, Seung-Ki;Kim, Myung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1220-1226
    • /
    • 2008
  • A route control in railway is one of the very important system to operate a train. An efficient train route control assures to increase train operation performance with a same railway system. The erroneous route control can accompany serious accidents which occur train collision or derailment which provokes death. A Route control carries out exactly lest the accident should take place. An interlocking table is widely used for the exact route control. The table has the problem of its exactness proving because it has been established by experts. In this paper, We tried to formalize a route control using mathematical logic. A route consists of symbolized tracks, signals, switch and crossing. It represents as a set, respectively. We proposed route setting control logic, converted the elements to set logics and construct route logics with the set logics of the elements. Finally we proposed a model which presents a prototype routes and we proved the proposed logics using the proposed method.

  • PDF

A Study for the Switching Method of the Temperature Control System with the Resonance Feature (공진특성을 가지는 온도제어시스템의 스위칭 기법 연구)

  • Park, Hwal-Gon;Park, Cheol-U;Choe, Yeon-Ho;Gu, Bon-Ho;Gwon, U-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.87-90
    • /
    • 2003
  • There are generally two temperature control methods using ac voltage regulators - the phase control method and the on-off control method. The phase control method uses thyristor's angles of extinction for the output power regulation and the on-off control method uses the control of on and off times for the output power regulation. Both of methods have the problems that are the unbalance of the three phase and surge current caused system's destruction. The main object of this study proposes a solution of problems of surge currents and unbalance of three phase when thyristor voltage regulator is switching. To solve the problem, It is proposes that the solution of surge currents is using a tap transformer and an additional switch with adjustable resistance and applies zero crossing of switching voltage of two input line to power load. This method is discuss and verified by computer simulations and experiments.

  • PDF

Design of Simple Neuro-controller for Global Transient Control and Voltage Regulation of Power Systems

  • Jalili-Kharaajoo Mahdi;Mohammadi-Milasi Rasoul
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.302-307
    • /
    • 2005
  • A novel neuro controller based simple neuro-structure with modified error function is introduced in this paper. This controller consists of two independent controllers, known as the voltage regulator and the angular controller. The voltage regulator is used to modify terminal voltage for the purpose of tracking a reference voltage. The angular controller is utilized to guarantee the stability of the system. In this structure each neuron uses a linear hard limit activation function that depends on the controlled variable and its derivatives. There is no need for parameter identification or any off-line training data. Two proposed controllers are merged by a smooth switch to build a complete controller. The effectiveness of the proposed novel control action is demonstrated through some computer simulations on a Single-Machine Infinite-Bus (SMIB) power system.

Remote Power Control System using the Raspberry Pi

  • Park, Jin-Ho;Yang, Hong-Sik;Lee, Jae-Hyeok;Lee, Hoon-Jae;Kim, Tae-Yong
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.120-123
    • /
    • 2015
  • The use of smart devices worldwide has been increasing day by day and its applications based on IoT have been also extended. But the power control system requires complicated control and processing information from the various sensors in practice. One of the best ways to save the power consumption is to manage electrical equipment individually on the Internet. In this paper, remote power control system for managing the power through the relay switch module via Python server was implemented by using Raspberry Pi. The proposed power control system can be used anywhere over the Internet.

New MPPT Control Strategy for Two-Stage Grid-Connected Photovoltaic Power Conditioning System

  • Bae, Hyun-Su;Park, Joung-Hu;Cho, Bo-Hyung;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.174-180
    • /
    • 2007
  • In this paper, a simple control method for two-stage utility grid-connected photovoltaic power conditioning systems (PCS) is proposed. This approach enables maximum power point (MPP) tracking control with post-stage inverter current information instead of calculating solar array power, which significantly simplifies the controller and the sensor. Furthermore, there is no feedback loop in the pre-stage converter to control the solar array voltage or current because the MPP tracker drives the converter switch duty cycle. This simple PCS control strategy can reduce the cost and size, and can be utilized with a low cost digital processor. For verification of the proposed control strategy, a 2.5kW two-stage photovoltaic grid-connected PCS hardware which consists of a boost converter cascaded with a single-phase inverter was built and tested.

Structure Design and Implementation of AC Servo Motor Control Program (AC 서보모터 제어 프로그램 구조 설계 및 구현)

  • Kyungah Kim;Joon-Young Choi
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.5
    • /
    • pp.209-215
    • /
    • 2023
  • This study proposes an AC servo motor control program structure and its implementation method to efficiently integrate 13 types of additional compensation algorithms into the basic FOC (field-oriented control) algorithm program. Various compensation algorithms are necessary to enhance the stability and performance of machine tools by compensating for interference from disturbances and vibrations. Each compensation algorithm is implemented as a separate, independent function and called from a switch-case statement in the ISR (interrupt service routine) of the PWM (pulse-width modulation) device. The advantages of this approach include facilitating not only debugging and testing but also reducing the possibility of errors during the program development phase. Thus, it is easy to add and activate each specific compensation algorithm for the program update during the program operation phase. The implemented motor control program was experimented with a single-axis feed shaft testbed driven by a commercial AC servo motor control drive board and a 750 Watts SPMSM (surface-mounted permanent magnet synchronous motor), and the results verified its normal operation and performance improvement.

Implementation of a High Efficiency SCALDO Regulator Using MOSFET (MOSFET를 이용한 고효율 SCALDO 레귤레이터 구현)

  • Kwon, O-Soon;Son, Joon-Bae;Kim, Tea-Rim;Song, Jong-Gyu
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.304-310
    • /
    • 2015
  • A SCALDO(Supercapacitor Assisted LDO) regulator is a new regulator having advantages of a SMPS(Switch Mode Power Supply) which has a good efficiency and a LDO(Low Drop-out) regulator which has stable output characteristics and good EMI(Electro Magnetic Interference) characteristics. However, a conventional SCALDO regulator needs a lot of power consumption to control its switches and it drops an efficiency of the circuit. In this paper, to reduce switching power consumption and improve an efficiency of the circuit, a new SCALDO regulator adopting MOSFETs as its switching parts is proposed and it is found out that the proposed SCALDO regulator has the maximum 9.5% higher efficiency than the conventional SCALDO regulator. We also try to simplify production process of the circuit by changing switching control method of the circuit from MCU(Micro-controller unit) based firmware control to hardware control using a comparator and a T-F/F(Flip Flop).

The Design of Interleaved Bi-directional DC-DC Converter for Fuel Cell and Battery Hybrid System (연료전지·이차전지 하이브리드 시스템을 위한 인터리빙 양방향 DC-DC 컨버터 설계)

  • Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;Lee, Sang-Cheol;Lee, Dong-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Fuel cell power system is one of the most promising energy source for the alternative energy because it has unique advantages such as high energy density, no power drop during operation, and feasible to make compact size. However, due to very low response time, fuel cell is difficult to correspond to drastic load changes and start-up operation. For solving these problem, fuel cell power system must include energy storage device such as Li-Poly battery or super capacitor. Therefore, bi-directional DC-DC converter must be required for this storage device and fuel cell-PCS control. This paper presents a design and modeling of the bi-directional DC/DC converter. Firstly, we present modeling the boost and buck mode of the bi-directional converter through both PWM switch model and state space averaging technique. Secondly, in order to minimize output ripple and transient response overshoot, we have two identical DC-DC converters interleaved and adopt two-loop voltage-current controller. The proposed bi-directional DC-DC converter's modeling method and control design have been verified with computer simulation and experimentation.

Management System of USN-based Collaborative Lighting Energy (USN기반 참여형 조명에너지 관리시스템)

  • Kim, Sam-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.47-53
    • /
    • 2013
  • Nowadays, Advanced country have devised a plan energy-saving through lighting effectiveness and increasing performance of lighting control system. If it uses the LED as a source of light then conserve electricity by 50%. This paper implement LEMS(Lighting Energy Management System) that applicate and Smart Dimmer and Smart Switch that control the digital LED light, support wired-wireless communication using USN(Ubiquitous Sensor Network). This system of validity and reliability control special purpose lamp including indoor and outdoor lighting and landscape lighting effectively. It minimize the use of indoor and outdoor lighting energy by USN remote integral control function of Digital System Lighting of LED and increase effectiveness of energy and is a collaborative system that can feedback the use of electricity by measurement itself through Web and Switch.