• Title/Summary/Keyword: Switch Fault

Search Result 186, Processing Time 0.027 seconds

Investigation of Fault-Mode Behaviors of Matrix Converters

  • Kwak, Sang-Shin
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.949-959
    • /
    • 2009
  • This paper presents a systematic investigation of the fault-mode behaviors of matrix converter systems. Knowledge about converter behaviors after fault occurrence is important from the standpoint of reliable system design, protection and fault-tolerant control. Converter behaviors have been, in detail, examined with both qualitative and quantitative approaches for key fault types, such as switch open-circuited faults and switch short-circuited faults. Investigating the fault-mode behaviors of matrix converters reveals that converter operation with switch short-circuited faults leads to overvoltage stresses as well as overcurrent stresses on other healthy switching components. On the other hand, switch open-circuited faults only result in overvoltage to other switching components. This study can be used to predict fault-mode converter behaviors and determine additional stresses on remaining power circuit components under fault-mode operations.

A Fault Diagnosis Method in Cascaded H-bridge Multilevel Inverter Using Output Current Analysis

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2278-2288
    • /
    • 2017
  • Multilevel converter topologies are widely used in many applications. The cascaded H-bridge multilevel inverter (CHBMI), which is one of many multilevel converter topologies, has been introduced as a useful topology in high and medium power. However, it has a drawback to require a lot of switches. Therefore, the reliability of CHBMI is important factor for analyzing the performance. This paper presents a simple switch fault diagnosis method for single-phase CHBMI. There are two types of switch faults: open-fault and short-fault. In the open-fault, the body diode of faulty switch provides a freewheeling current path. However, when the short-fault occurs, the distortion of output current is different from that of the open-fault because it has an unavailable freewheeling current flow path due to a disconnection of fuse. The fault diagnosis method is based on the zero current time analysis according to zero-voltage switching states. Using the proposed method, it is possible to detect the location of faulty switch accurately. The PSIM simulation and experimental results show the effectiveness of proposed switch fault diagnosis method.

Fault-Tolerant Strategy to Control a Reverse Matrix Converter for Open-Switch Faults in the Rectifier Stage

  • Lee, Eunsil;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • Reverse matrix converters, which can step up voltages, are suitable for applications with source voltages that are lower than load voltages, such as generator systems. Reverse matrix converter topologies are advantageous because they do not require additional components to conventional matrix converters. In this paper, a detection method and a post-fault modulation strategy to operate a converter as close as possible to its desired normal operation under the open-switch fault condition in the rectifier stage are proposed. An open-switch fault in the rectifier stage of a reverse matrix converter causes current distortions and voltage ripples in the system. Therefore, fault-tolerant control for open-switch faults is required to improve the reliability of a system. The proposed strategy determines the appropriate switching stages from among the remaining healthy switches of the converter. This is done based on reference currents or voltages. The performance of the proposed strategy is experimentally verified.

Diagnosis Methods for IGBT Open Switch Fault Applied to 3-Phase AC/DC PWM Converter

  • Im, Won-Sang;Kim, Jang-Sik;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.120-127
    • /
    • 2012
  • Fault diagnosis technique of electrical drives is becoming more and more important, since voltage fed converter system has become industrial standard in many applications. Many studies have been conducted an inverter fault diagnosis for induction motors. However, there are few researches about fault diagnosis of 3-phase ac/dc PWM (Pulse Width Modulation) converter compared to the dc/ ac inverter. The ac/dc converter is the opposite of dc/ac inverter at current flow. Also, inverter and converter have different current patterns under the same condition of IGBT (Insulated gate bipolar transistor) open switch fault. Therefore, it is difficult to apply intact diagnosis methods of inverter to the converter. This paper proposes modified fault detection methods for IGBT open switch fault in 3-phase ac/dc PWM converter by modifying established fault diagnostic methods for dc/ac inverters.

Experimental and Analytical Studies on the Characteristics of Fast Switch in Combinations of Various Superconducting Tapes (다양한 선재 조합에 따른 이종 초전도 스위치의 특성 실험 및 분석)

  • Lee, Ji-Ho;Kim, Young-Jae;Na, Jin-Bae;Choi, Suk-Jin;Jang, Jae-Young;Hwang, Young-Jin;Kim, Jin-Sub;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • A Hybrid Fault Current Limiter(FCL) which has more advantages in fast response and thermal characteristics than a simple resistive FCL had been proposed by our group. The Hybrid FCL consists of a resistive FCL for the magnitude of the first peak of fault current, and a fast switch for detecting fault current and generating the repulsive force within a cycle in fault situation. In ideal case, the impedance of the fast switch wound with two other kinds of HTS tape is negligibly zero in normal operation. But, during the fault situation, each HTS tape has different quench characteristics because of asymmetric current distribution. And this phenomenon causes effective flux and this flux opens the switch through the repulsive force applied to a metal plate of the fast switch. The magnitude of the repulsive force affects the switching characteristics of the fast switch. It should be large enough to raise the metal plate up. Otherwise the arc re-out break which are caused by not enough repulsive force to raise the metal plate up can cause unintended operation of the fast switch. In this paper, the numerical calculation of the repulsive force applied to the metal plate of the fast switch in various combinations of HTS tapes was performed by using the short-circuit test and finite element method.

Fault Tolerant System for Open Switch Fault of BLDC Motor Drive (BLDC 전동기 드라이브의 개방된 스위치 고장에 대한 고장 허용 시스템)

  • Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Lee, Byoung-Kuk;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.164-171
    • /
    • 2006
  • In this paper, the fault tolerant system for BLDC motor has been proposed to maintain control performance under an open switch fault of inverter. The fault identification is proposed to two methods, which are using the difference between reference and actual current, and adding voltage sensors across lower legs of inverter. The reconfiguration scheme is achieved by the four-switch topology connecting a faulty leg to the middle point of DC-link using bidirectional switches. The proposed fault tolerant system quickly recovers control performance by short fault detecting time and reconfiguration of system topology. Therefore, continuous free operation of the BLDC motor drive system after faults is available. The superior performance of the proposed fault tolerant system is proved by simulation.

Open Fault Diagnosis Method for Five-Phase Induction Motor Driving System (5상 유도전동기 구동 시스템을 위한 인버터의 개방고장진단 방법)

  • Baek, Seung-Koo;Shin, Hye-Ung;Kang, Seong-Yun;Park, Choon-Soo;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.304-310
    • /
    • 2016
  • This paper proposes a fault diagnosis method for an open-fault in inverter driving five-phase induction motor. The five-phase induction motor has a high output torque and small torque ripple in comparison to three-phase. The best advantage of the five-phase induction motor is fault diagnosis and tolerant control using redundancy of phases. This paper uses an inverter as a power converter for driving a five-phase induction motor. If a switch of inverter occurs to the open-fault, this problem is the influence on the output current and output torque. To solve this problem, there is need of an accurate diagnosis and fault switch distinction. Therefore, this paper propose a fault detection method of the open-fault switches for the fault diagnosis. First, analyzing the pattern for the open-circuit fault of one phase. next, analyzing the pattern for the open-circuit fault of each inverter switches. Through the pattern analysis, It defines the scope of each of the failure switch. Thereafter, By using an algorithm that proposes to perform a fault diagnosis method. The proposed algorithm is verified from the experiment with the 1.5 kW five-phase induction motor.

An Implementation of the Fault Simulator for Switch Level Faults (스위치 레벨 결함 모델을 사용한 결함시뮬레이터 구현)

  • Yeon, Yun-Mo;Min, Hyeong-Bok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.628-638
    • /
    • 1997
  • This paper describes an implementation of fault simulator that can switch level fault models such as transistor stuck-open and stuck-closed faults as well as stuck-at faults. It overcomes the limitation when only stuck-at faults are used in VLSI circuits. Signal flow of a transistor switch is bidirectional in its nature, but most of signal flows in a switch level circuits, about 95%, are in one direction. This fault simulator focuses on the way which changes a switch level circuit into a graph model with two directed edges. Two paths from Vdd to ground and from ground to directions. Logic simulation is performed along dominant signal flows. The switch level fault simulation estimates the dominant path by injecting switch-level fualts, and pattern vectors are used for faults simulation. Experimental results are shown to demonstrate correctness of the fault simulator.

  • PDF

Fault Tolerant Control Methods for Dual Type Independent Multi-Phase BLDC Motor under the Open-Switch Fault Conditions

  • Kim, Yong-Hyu;Heo, Hong-Jun;Park, June-Ho;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.722-732
    • /
    • 2018
  • Dual type Independent multi-phase BLDC Motor (DI-BLDCM) is designed to be robust to faulty conditions of motor and drive system. Despite the efforts of the motor design, open-switch faults of DI-BLDCM drive system cause the torque ripple of the motor. This torque ripple makes unwanted sound noise and mechanical vibration of associated systems. This paper proposes four methods for compensating the torque ripple and compares the characteristics of each proposed method. All proposed methods are able to reduce the torque ripple to similar level of the healthy condition, although the motor operates in open-switch fault conditions. However, these methods have different characteristics in various fault conditions. Therefore, from the results of the comparison, the suitable method is selected for the various fault conditions. The feasibility of the proposed methods is proved by the several experimental results.

Low-Cost Fault Diagnosis Algorithm for Switch Open-Damage in BLDC Motor Drives

  • Park, Byoung-Gun;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.702-708
    • /
    • 2010
  • In this paper, a fault diagnosis algorithm for brushless DC (BLDC) motor drives is proposed to maintain control performance under switch open-damage. The proposed fault diagnosis algorithm consists of a simple algorithm using measured phase current information and it detects open-circuit faults based on the operating characteristic of BLDC motors. The proposed algorithm quickly recovers control performance due to its short detection time and its reconfiguration of the system topology. It can be embedded into existing BLDC drive software as a subroutine without additional sensors. The feasibility of the proposed fault diagnosis algorithm is proven by simulation and experimental results.