• 제목/요약/키워드: Swirl-stabilized Flame

검색결과 39건 처리시간 0.021초

합성가스-순산소 예혼합 화염의 연소특성 (Syngas-Oxygen Combustion Characteristics of a Swirl-Stabilized Premixed Flame)

  • 조주형;박준홍;전충환;안국영;김한석
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.561-569
    • /
    • 2010
  • The present study deals with experimental investigations on the syngas-oxygen combustion characteristics of a swirl-stabilized premixed flame in a 10 kW combustor. The effect of hydrogen in syngas has been investigated with different swirl angles to identify the role of hydrogen and swirl strength on the flame stability and CO emissions. The results show that hydrogen addition extended the blowout limit while narrowing the flashback limit. The dependence of blowout on the swirl angle is negligible while the dependence of flashback on the swirl angle is evidenced by two regimes depending on the amount of hydrogen. CO emission is decreased with increasing excess $O_2$ supply or increasing hydrogen content. Chemiluminescence diagnostics is utilized to provide information on the structure of a swirl-stabilized premixed flame. The OH chemiluminescence intensity is more concentrated near the burner exit with an increase in the hydrogen content, which results from high reactivity of hydrogen.

연소실 압력변동과 2차 연료 분사가 스월 화염에서 화염안정화와 배출 특성에 미치는 영향 (Influence of changing combustor pressure and secondary fuel injection on flame stabilization and emission characteristic in swirl flame)

  • 김종률;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.133-138
    • /
    • 2007
  • Influence of changing combustor pressure on flame stabilization and emission index in the swirl-stabilized flame was investigated The combustor pressure was controlled by suction fan at combustor exit. Pressure index ($P^{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, respectively, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed similar tendency with laminar flames. $NO_x$ emission index decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s. of pressure fluctuations is increased with decreasing combustor pressure. This flame fluctuation caused incomplete combustion , hence CO emission index increased. These oscillating flames were measured by simultaneous $CH{\ast}$ chemiluminescence time-series visualization and pressure fluctuation measurement.

  • PDF

메탄/순산소 예혼합 화염의 선회 특성 (Combustion Characteristics of Methane/Oxygen Gas in Pre-mixed Swirl Flame)

  • 최원석;김한석;조주형;김용모;안국영;우타관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.1979-1983
    • /
    • 2008
  • The effects of carbon dioxide addition to oxygen have been investigated with swirl-stabilized premixed methane flame in a laboratory-scale pre-mixed combustor. The methane fuel and oxydant mixture gas ($CO_2$ and $O_2$) were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for different amount of carbon dioxide addition to the methane fuel and different swirl strengths. The effects of carbon dioxide addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using chemiluminescence techniques to provide information about flow field. The results show that the flame area increases at upstream of reaction zone because of increase in recirculation flow for increase in swirl intensity. The flame area is also increased at the downstream zone by recirculation flow because of increase in swirl intensity which results in higher centrifugal force. The OH and CH radical intensity of reaction zone decrease with carbon dioxide addition because the carbon dioxide plays a role of dilution gas in the reaction zone.

  • PDF

Basis Mode of Turbulent Flame in a Swirl-Stabilized Gas Turbine using LES and POD

  • Sung, Hong-Gye;Yang, Vigor
    • 한국연소학회지
    • /
    • 제6권2호
    • /
    • pp.29-35
    • /
    • 2001
  • Unsteady numerical study has been conducted on combustion dynamics of a lean-premixed swirl-stabilized gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) parallel architecture, large eddy simulation(LES), and proper orthogonal decomposition (POD) technique was applied. The unsteady turbulent flame dynamics are simulated so that the turbulent flame structure can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots. Those flame dynamics coincides with experimental data. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis. The flame structure based on odd basis modes is apparently larger than that of even ones. The flame structure can be extracted from the summation of the basis modes and eigenvectors at any moment.

  • PDF

연소실 압력변동이 화염안정화와 배출특성에 미치는 영향 (Influence of changing Combustor Pressure on Flame Stabilization and Emission Charncteristics)

  • 김종률;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2354-2359
    • /
    • 2007
  • Influence of changing combustor pressure on flame stabilization and emission index in the swirl-stabilized flame was investigated. The combustor pressure was controlled by suction fan at combustor exit. Pressure index ($P^{\ast}$=Pabs/Patm), where Pabs and Patm indicated the absolute pressure and atmosphere pressure, respectively, was controlled in the range of 0.7${\sim}$1.3 for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed similar tendency with laminar flames. NOx emission index decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s. of pressure fluctuations is increased with decreasing combustor pressure. This flame fluctuation caused incomplete combustion, hence CO emission index increased. These oscillating flames were measured by simultaneous $CH^{\ast}$ chemiluminescence time-series visualization and pressure fluctuation measurement.

  • PDF

메탄/순산소 예혼합 화염의 선회특성 (Combustion Characteristics of Methane/Oxygen in Pre-Mixed Swirl Flame)

  • 김한석;최원석;조주형;안국영
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.343-348
    • /
    • 2009
  • The present study has experimentally investigated the effects of $CO_2$ diluted oxygen on the structure of swirl-stabilized flame in a lab-scale combustor. The methane fuel and oxidant mixture gas ($CO_2$ and $O_2$) were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for various amount of carbon dioxide addition to the methane fuel and various swirl strengths. The effects of carbon dioxide addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using chemiluminescence techniques to provide information about flow field. The results show that the hot combustion zone increases at the upstream reaction zone because of an increase in the recirculation flow for an increase in swirl intensity. The hot combustion zone is also increased at the downstream zone by recirculation flow because of an increase in swirl intensity which results in higher centrifugal force. The OH and CH radical intensities of reaction zone decrease with carbon dioxide addition because the carbon dioxide plays a role of diluted gas in the reaction zone.

연소실 압력변동과 2차 연료분사가 화염안정화와 NOx 배출에 미치는 영향 (Influence of changing combustor pressure and secondary fuel injection on flame stabilization and NOx emission)

  • 김종률;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.128-133
    • /
    • 2006
  • Influence of changing combustor pressure on flame stabilization and nitrogen oxide (NOx) emission in the swirl-stabilized flame with secondary fuel injection was investigated. The combustor pressure was controlled by suction at combustor exit. Pressure index ($P{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed different tendency compared with laminar flames. Emission index showed maximum value near atmospheric condition and decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s of pressure fluctuations also showed similar tendency with nitric oxide emission. By injecting secondary fuel into flame zone, the flammable limits were extended significantly. Emission index of nitric oxide and r.m.s. of pressure fluctuations were also controlled by injecting secondary fuel. The swirl flames were somewhat lifted by secondary fuel with high momentum, hence low nitric oxide emission. This NOx reduction technology is applicable to industrial furnaces and air conditioning system by adopting secondary fuel injection.

  • PDF

스월 난류연소기의 흡입공기온도, 스월세기에 따른 연소불안정 발생 메커니즘에 대한 연구 (A study on flame bifurcation due to inlet mixture temperature and swirl strength in a swirl turbulent combustor)

  • 김종찬;성홍계;유혁
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.377-380
    • /
    • 2007
  • 스월 난류연소기에서의 혼합기 유입온도와 스월세기에 따른 연소불안정 발생 메커니즘 알아보기 위하여 Large Eddy Simulation을 수행하였다. 스월각 45도 경우 연료공기 혼합기의 온도를 600K에서 660K으로 증가시켰을 경우 화염분기(Bifurcation)현상이 관찰되었고, 스월 강도가 변할 경우 온도와 관계없이 화염분기가 일어나거나 그렇지 않음을 확인하였다. 벽면근처의 혼합가스 유동속도와 화염속도간의 상관관계는 화염분기현상의 발생에 주요한 인자임을 확인하였다.

  • PDF

하이브리드 사이클론 제트 연소기의 연소특성에 관한 연구 (A Study on the Combustion Characteristics of a Hybrid Cyclone Jet Combustor)

  • 정원석;황철홍;이규영;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.149-155
    • /
    • 2002
  • A promising new approach to achieve low pollutants emission and improvement of flame stabilities is tested experimentally using a hybrid cyclone jet combustor employing both premixed and diffusion combustion mode, Three kind of nozzles are used for LNG(Liquified Natural Gas) as a fuel. The combustor is operated by two method, One is ATI(Air Tangential Injection) mode, generated swirl flow by air as general swirl combustor, and the other is PTI(Premixed gas Tangential Injection) mode, The PTI mode consists of diffusion flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion flame. The results showed that the stable region of the PTI mode is more larger than the ATI mode. In addition, the reduction of NOx emission in PTI mode, as compared with that for the ATI mode is at least 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, the cyclone jet combustor has high performance of flame stability.

  • PDF

수소 첨가가 예혼합 메탄 화염의 NOx 생성에 미치는 영향 (Hydrogen Enrichment Effects on NOx Formation in Pre-mixed Methane Flame)

  • 김한석;안국영
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.75-84
    • /
    • 2007
  • The effects of hydrogen enrichment to methane on NOx formation have been investigated with swirl stabilized pre-mixed hydrogen enriched methane flame in a laboratory-scale pre-mixed combustor(nominally of 5,000 kcal/hr). The hydrogen enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame stability was examined for different amount of hydrogen addition to the methane fuel, different combustion air flow rates and swirl strengths by comparing equivalence ratio at the lean flame limit. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using gas analyzers, and OH chemiluminescence techniques to provide information about species concentration of emission gases and flowfield. The results of NOx and CO emissions were compared with a diffusion flame type combustor. The results show that the lean stability limit depends on the amount of hydrogen addition and the swirl intensity. The lean stability limit is extended by hydrogen addition, and is reduced for higher swirl intensity at lower equivalence ratio. The addition of hydrogen increases the NOx emission, however, this effect can be reduced by increasing either the excess air or swirl intensity. The NOx emission of hydrogen enriched methane premixed flame was lower than the corresponding diffusion flame under the fuel lean condition.