• Title/Summary/Keyword: Swirl intensity

Search Result 141, Processing Time 0.025 seconds

The Characteristics of the Flow and Combustion in a Turbulent Non-Premixed Flat Flame (난류 비예혼합 평면화염의 유동과 연소 특성)

  • Kwark, Ji-Hyun;Jung, Yong-Ki;Jun, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.447-457
    • /
    • 2003
  • An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl number on the flow and combustion characteristics. First. stream lines and velocity distribution in the flow field were obtained using PIV method. In contrast with the axial flow without swirl, highly swirled air induced stream lines along the burner tile. and backward flow was caused by recirculation in the center zone of the flow field. In the combustion. the flame with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure by measuring OH and CH radicals intensity and by calculating Damkohler number(Da) and turbulence Reynolds number(Re$_{T}$) was examined. It appeared to be comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the burned gas decreased the flame temperature and emissions concentrations as NO and CO. Consequently, the stable flat flame with low NO concentration was achieved.d.

A study on the Characteristics of In-Cylinder Intake Flow in Spark Ignition Engine Using the PIV

  • Lee Suk-Young;Jeong Ku-Seob;Jeon Chung-Hwan;Chang Young-June
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.704-715
    • /
    • 2005
  • In this study, to investigate in-cylinder tumble or swirl intake flow of a gasoline engine, the flow characteristics were examined with opening control valve (OCV) and several swirl control valves (SCV) which intensify intake flow through steady flow experiment, and also turbulent characteristics of in-cylinder flow field were investigated by 2-frame cross-correlation particle image velocimetry (PIV) method. In the investigation of intake turbulent characteristics using PIV method, the different flow characteristics were showed according to OCV or SCV figures. The OCV or SCV installed engine had higher vorticity and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Above all, SCV B type was superior to the others. About energy dissipation and reynolds shear stress distribution, a baseline engine had larger loss than OCV or SCV installed one because flow impinged on the cylinder wall. It should be concluded, from what has been said above, as swirl component was added to existing tumble flow adequately, it was confirmed that turbulent intensity was enlarged, flow energy was conserved effectively through the experiment. In other words, there is a suggestion that flow characteristics as these affected to in-cylinder combustion positively.

SELF-PULSATION CHARACTERISTICS OF A SWIRL COAXIAL INJECTOR WITH VARIOUS INJECTION AND GEOMETRIC CONDITIONS

  • Im, Ji-Hyuk;Kim, Dong-Jun;Yoon, Young-Bin;Bazarov, V.
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.29-37
    • /
    • 2005
  • The spray and acoustic characteristics of a gas/liquid swirl coaxial injector are studied experimentally. The self-pulsation is defined as a pressure and flow rate oscillations by a time-delayed feedback between liquid and gas phase. Self-pulsation has strong influences on atomization and mixing processes and accompanies painful screams. So. the spray and acoustic characteristics are investigated. Spray patterns are observed by shadow photography technique in order to determine the onset of self-pulsation. And self-pulsation boundary with Injection conditions and recess length is get. To measure the frequency of the spray oscillation. oscillation of the laser intensity which passes through spray is analyzed by Fast Fourier Transform. For acoustic tests, a PULSE System was used. Acoustic characteristics of a swirl coaxial injector are investigated according to the injection conditions. such as the pressure drop or the liquid and gas phase. and injector geometries. such as recess length and gap size between the inner and outer injector. Front the experimental results. the increase of recess length leads to the rapid increase of the sound pressure level. And as the pressure drop of the liquid phase increases. the frequency of the self?pulsation shifts to the higher frequency. The frequency of spray oscillations is the same as that of the acoustic fields by self-pulsation.

  • PDF

Analysis of Swirl Flow and Combustion Characteristics by Variable Valve's Operation of Cam-In-Cam System based on GT-Power Program (GT-Power기반 Cam-In-Cam 가변밸브작동에 따른 스월유동 및 연소특성 해석)

  • Lee, Y.M.;Jo, I.S.;Kim, J.H.;Park, S.W.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.58-65
    • /
    • 2018
  • An analytic strategy to control the variable valve actuation applied to two intake valves (flow port intake valve and swirl port intake valve) was performed in this study. we considered the variation in phasing of intake valve profiles by using the Cam-in-Cam technology. The analytic model was implemented in the GT-Power simulation program and analyzed the result of regulated emissions such as, NOx and Soot, especially with IMEP characteristics. Namely, we meticulously investigated the sources of having effect on the amount of NOx and soot formation under the test conditions with retard timing of both flow port and swirl port intake valves for decreasing the opening duration by 35CAD. Also, we analyzed the effect of incylinder pressure and temperature with NOx variations and in-cylinder pressure and temperature on NOx variations and normalized turbulent intensity. Through this analysis, some useful results on the combustion and flow characteristics of the swirl port and flow port control of the intake valve were obtained by this study.

STUDY ON THE IN-CYLINDER FLOW CHARACTERISTICS OF AN SI ENGINE USING PIV

  • LEE S.-Y.;JEONG K.-S.;JEON C.-H.;CHANG Y.-J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.453-460
    • /
    • 2005
  • The tumble or swirl flow is used to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the end of the compression stroke. Since the in-cylinder flow is a kind of transient state with rapid flow variation, which is non-steady state flow, the tumble or swirl flow has not been analyzed sufficiently whether they are applicable to combustion theoretically. In the investigation of intake turbulent characteristics using PIV method, typical flow characteristics were figured out by SCV configurations. An engine installed SCV had higher vorticity and turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially near the cylinder wall and lower part of the cylinder. Above all, the engine with SCV 8 was superior to the others in aspect of vorticity and turbulent strength. For energy dissipation, a baseline engine had much higher energy loss than the engine installed SCV because flow impinged on the cylinder wall. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation increased and flow energy was conserved effectively through the experiment.

An Experimental Study on the Augmentation of Heat Transfer by Impinging Air Jets with Swirl (충돌선회분류(衝突旋回噴流) 열전달증진(熱傳達增進)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Ohu, Su-Cheol;Park, Sung-Soo
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.22-30
    • /
    • 1993
  • This Paper deals with the experimental study of the axisymmetric air jet impinging vertically on the flat heating surface with and without swirl. The purpose of this study is to investigate the characteristics of flow, augmentation of heat transfer rate, turbulent intensity, and the comparison of heat transfer rate, the optimal swirling condition about the swirl and nonswirl axisymmetric air jet. In order to augment the heat transfer on the flat heating surface without introducing any additional power, the technique used in the present work was placement of twisted tape inserted pipe in front of the nozzle exit in order to make a swirl. The effect of swirl degree is investigated in case of S=0., 0.056, 0.111, 0.222 and the velocity of the jet was 14, 20, 26, 32, 38, 44m/s. The distance between the nozle exit and the stagnation point on the impinging plate was the H/D=$1{\sim}14$. In order to analyze of the flow structure which increase heat transfer, the velocity and the turbulent intensity of the axisymmetric jet was measured by a hot wire anemometer according to the swirl number and H/D.

  • PDF

Effect of Mixer Structure on Turbulence and Mixing with Urea-water Solution in Marine SCR System (선박용 SCR 시스템에서 혼합기 구조에 따른 난류유동과 우레아 수용액의 혼합특성)

  • Kim, Tae-Kyoung;Sung, Yon-Mo;Han, Seung-Han;Ha, Sang-Jun;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.814-822
    • /
    • 2012
  • To improve the flow and mixing characteristics of marine SCR system, two different mixer including up-down and swirl type mixer were considered. The purpose of this study is to analyse turbulence intensity and uniformity index in detail and to improve the performance of SCR with respect to the mixer structure. The results showed that, the concentration uniformity index is improved by about 5% with the utilization of both mixers in the front of catalyst part. Although the RMS value and relative turbulence intensity increased after the up-down type mixer, it could observed that the value of two parameters decreased with the flow proceeding forward to the downstream. For the case of swirl type mixer, the decrease of RMS value and relative turbulence intensity were relatively smaller than that of up-down type mixer, and uniform distribution of relative turbulence intensity was observed. As a results, it could be concluded that the mixing effects and the distance of the two kinds of mixer were different.

Study on Operating Characteristics for NOx Reduction in Ultra Low NOx Burner Combustion Using 80 kW Furnace (80 kW 초 저 NOx 단일 버너 연소로에서 NOx 감소를 위한 운전특성 연구)

  • Chae, Taeyoung
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • This experimental study investigates the design parameters to achieve ultra low NOx combustion of coal using a 80 kW capacity single-burner furnace. The influence of key design parameters such as SN, overall and burner-zone equivalence ratios, primary/secondary air ratio, overfire air (OFA) ratio were tested for a total of 81 cases. The results showed that weak swirl intensity of the burner leads to higher NOx emission whereas strong swirl intensity accompanies increased CO concentration desipte lower NOx emission. Therefore, finding an appropirate swirl intensity is essential for the burner design. Larger flow rate of secondary air increased NOx emission, whereas smaller flow rate stretches the flame and increased CO emission. The lowest NOx emission of 82 ppm (6% O2) was achieved at the optimal condition of the present burner deisgn. It is expected to furrther lower the NOx emission by introducing splitting the burner secondary air into three or four streams.

Development of Hybrid/Dual Jet Combustor for a MGT (Part I: Experimental Study on Geometric Optimization) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part I: 형상 최적화를 위한 실험연구))

  • Park, Tae-Joon;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.60-69
    • /
    • 2013
  • An optimum configuration of the hybrid/dual swirl jet combustor for a micro-gas turbine was investigated experimentally. Location of pilot nozzle, angle and direction of swirler vane were varied systematically as main parameters under the conditions of constant thermal load. The results showed that the variation in locations of inner fuel nozzle and pilot burner resulted in significant change in flame shape and swirl intensity due to the changes in recirculating flow pattern and minimum flow area near burner exit, in particular, with the significant reduction of CO emission near lean-flammability limit. In addition, it was observed that the co-swirl configuration produced less CO and NOx emissions compared to the counter-swirl configuration.

Oscillating Boundary Layer Flow and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소에서의 경계층 진동 변화와 저주파수 연소불안정)

  • Kim, Jina;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.720-727
    • /
    • 2019
  • Resonating thermal lags of solid fuel with heat transfer oscillations generated by boundary layer oscillation is the primary mechanism of the occurrence of the LFI (Low Frequency Combustion Instability) in hybrid rocket combustion. This study was experimentally attempted to confirm that how the boundary layer was perturbed and led to the LFI. Special attention was also made on oxidizer swirl injection to investigate the contribution to combustion stabilization. Also the overall behavior of fluctuating boundary layer flow and the occurrence of the LFI was monitored as swirl intensity increased. Fluctuating boundary layer was successfully monitored by the captured image and POD (Proper Orthogonal Decomposition) analysis. In the results, oscillating boundary layer became stabilized as the swirl intensity increases. And the coupling strength between high frequency p', q' diminished and periodical amplification of RI (Rayleigh Index) with similar frequency band of thermal lag was also decreased. Thus, results confirmed that oscillating axial boundary layer triggered by periodic coupling of high frequency p', q' is the primary mechanism to excite thermal resonance with thermal lag characteristics of solid fuel.