DOI QR코드

DOI QR Code

Development of Hybrid/Dual Jet Combustor for a MGT (Part I: Experimental Study on Geometric Optimization)

마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part I: 형상 최적화를 위한 실험연구)

  • Park, Tae-Joon (School of Mechanical and Aerospace Engineering, Sunchon National University) ;
  • Hwang, Cheol-Hong (Department of Fire and Disaster Prevention, Daejeon University) ;
  • Lee, Kee-Man (School of Mechanical and Aerospace Engineering, Sunchon National University)
  • Received : 2013.06.09
  • Accepted : 2013.09.17
  • Published : 2013.10.01

Abstract

An optimum configuration of the hybrid/dual swirl jet combustor for a micro-gas turbine was investigated experimentally. Location of pilot nozzle, angle and direction of swirler vane were varied systematically as main parameters under the conditions of constant thermal load. The results showed that the variation in locations of inner fuel nozzle and pilot burner resulted in significant change in flame shape and swirl intensity due to the changes in recirculating flow pattern and minimum flow area near burner exit, in particular, with the significant reduction of CO emission near lean-flammability limit. In addition, it was observed that the co-swirl configuration produced less CO and NOx emissions compared to the counter-swirl configuration.

마이크로 가스터빈용 하이브리드/이중 선회 제트 연소기의 형상 최적화에 대한 실험연구가 수행되었다. 고정된 열부하에서 pilot 버너의 위치 및 선회기 베인의 방향이 주요 변수로 검토되었다. 주요 결과로서, pilot 버너 및 연료 노즐의 위치변화는 버너 출구 근처의 최소 유동면적 및 재순환 유동패턴의 변화를 발생시키며, 이로 인하여 선회강도 및 화염형상이 큰 영향을 받게 된다. 선회기 베인 각도의 증가($30^{\circ}$에서 $45^{\circ}$)는 희박가연한계 근처에서 CO 배출량을 크게 저감시킨다. 추가로 정방향 선회형상이 역방향 선회형상에 비해 보다 낮은 CO 및 NOx 배출량을 갖게 됨을 확인하였다.

Keywords

References

  1. Bahr, D., "Aircraft Turbine Engine NOx Emissions Abatement," In Culick, F., Heitor, M.V., Whitelaw, J.H. (Eds.), Unsteady Combustion, Kluwer Academic, pp. 234-264, 1995.
  2. Hwang, C.H. and Lee, C.E., "Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor," Journal of The Korean Society for Aeronautical & Space Science, Vol. 34, No. 7, pp. 79-88, 2006. https://doi.org/10.5139/JKSAS.2006.34.7.079
  3. Poinsot, T.J., Bourienne, F., Candel, S., Esposito, E. and Lang, W., "Suppression of Combustion Instabilities by Active Control," Journal of Propulsion and Power, Vol. 5, pp. 14-20, 1989. https://doi.org/10.2514/3.23108
  4. Hwang, C.H., Lee, C.E. and Kim, S.W., "LES Studies on Flow Structure and Flame Characteristics with Equivalence Ratio in a Swirling Premixed Combustor," Journal of The Korean Society of Combustion, Vol. 11, No. 4, pp. 27-35, 2006.
  5. Ishizuka, S., "On the Behavior of Premixed Flames in a Rotating Flow Field: Establishment of Tubular Flames," Proceedings of the Combustion Institute, Vol. 20, pp. 287-294, 1985. https://doi.org/10.1016/S0082-0784(85)80513-0
  6. Ishizuka, S., "An Experimental Study on Extinction and Stability of Tubluar Flames," Combustion and Flame, Vol. 75, pp. 367-379, 1989. https://doi.org/10.1016/0010-2180(89)90049-7
  7. Onuma, Y., Yamauchi, T., Mawatari, M, Morikawa, M., Noda, S., "Low NOx Combustion by a Cyclone-Jet Combustor," JSME Int. J., Ser., B, Vol. 44, No. 2, pp. 299-304, 2001. https://doi.org/10.1299/jsmeb.44.299
  8. Hwang, C.H., Lee, S.R., Kim, J.H. and Lee, C.E., "An Experimental Study on Flame Stability and Pollutant Emission in a Cyclone Jet Hybrid Combustor," Applied Energy, Vol. 86, No. 8, pp. 1154-1161, 2009. https://doi.org/10.1016/j.apenergy.2008.10.016
  9. Takashi, T. and Shingeru, S., "The Effect of Fuel-Air Mixing on NOx Formation in Non-Premixed Swirl Burners," Proceedings of the Combustion Institute, Vol. 26, pp. 2733-2739, 1996. https://doi.org/10.1016/S0082-0784(96)80110-X
  10. Hadef, R. and Lenze, B. "Effects of Coand Counter-Swirl on the Droplet Characteristics in a Spray Flame," Chemical Engineering and Processing, Vol. 47, pp. 2209-2217, 2008. https://doi.org/10.1016/j.cep.2007.11.017
  11. Eldrainy, Y.A., Saqr, K.M., Aly, H.S.,Lazim, T.M., Jaafar, M.N.M., "Large EddySimulation and Preliminary Modeling ofthe Flow Downstream a Variable GeometrySwirler for Gas Turbine Combustor,"International Communications in Heat andMass Transfer, Vol. 38, pp. 1104-1109, 2011. https://doi.org/10.1016/j.icheatmasstransfer.2011.05.017

Cited by

  1. A Study on the Flame Shape and the Interaction between Pilot and Main Flames in a Dual Swirl Combustor vol.18, pp.4, 2014, https://doi.org/10.6108/KSPE.2014.18.4.033
  2. An Experimental Study on Combustion Instability in Model Gas Turbine Combustor using Simulated SNG Fuel vol.20, pp.1, 2015, https://doi.org/10.15231/jksc.2015.20.1.032
  3. A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement vol.19, pp.1, 2014, https://doi.org/10.15231/jksc.2014.19.1.029
  4. Non-Reacting Flow Structure of a Low Swirl Combustor with respect to Inlet Velocities vol.22, pp.6, 2018, https://doi.org/10.6108/KSPE.2018.22.6.056