• Title/Summary/Keyword: Swirl Diffusion Flame

Search Result 41, Processing Time 0.017 seconds

The Effect of Swirl on the Structure of Concentric Laminar Jet Diffusion Flame (동축분류 층류제트 확산화염의 구조에 미치는 선회의 영향)

  • 김호영;민성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.578-588
    • /
    • 1992
  • In order to predict the effect of swirl on the structure of concentric laminar jet diffusion flame, present study examined the effect of swirl on the flame characteristics by numerical numerical analysis through theoretical model. The theoretical model has been developed for the co-axial laminar jet flame such that the fuel and air are supplying with swirl through inner and outer co-axial tube respectively. For the parametric study, swirl number, Reynolds number of fuel and air and directions of swirl are chosen as important parametes. The results of study show that the flame with width and shorter length is formed by larger swirl number. The important factor of the flame shape is the recirculating zone formed around jet axis near the exit of nozzle. In case of weak swirl, the effect of directions of swirl is not appeared. However, for the strong swirl, the flame with shorter length are appeared in case of counter-swirl compared with the case of co-swirl.

Characteristics of Flame Stabilization of the LFG Mixing Gas (LFG 혼합 연료의 화염 안정화 특성)

  • Kim, Sun-Ho;Oh, Chang-Bo;Lee, Chang-Eon;Lee, In-Dae
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.165-172
    • /
    • 1999
  • Landfill gas has merely half heating value compared with liquified natural gas but can be greatly utilized as a commercial fuel. The authors have examined emission characteristics as well as measured burning velocity of LFG mixed gas which contains plenty of $CO_{2}$. With the viewpoint of fuel utilization, flame stability could be one of important characteristics of LFG. In this study, the comparison experiments are conducted between $CH_{4}$ and LFG for searching the region of flame stabilization based upon the flame blowout at maximum fuel stream velocity. As a result, it is found that stabilization region of LFG is not improved with that of $CH_{4}$ in non-swirl/or weak swirl jet diffusion flame. However, it is also known that flame stability is hardly affected by inert gas in the strong swirl with considering widened flame stabilization region of LFG rather than LNG.

  • PDF

Hydrogen Enrichment Effects on NOx Formation in Pre-mixed Methane Flame (수소 첨가가 예혼합 메탄 화염의 NOx 생성에 미치는 영향)

  • Kim, H.S.;Ahn, K.Y.;Gupta, A.K.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • The effects of hydrogen enrichment to methane on NOx formation have been investigated with swirl stabilized pre-mixed hydrogen enriched methane flame in a laboratory-scale pre-mixed combustor(nominally of 5,000 kcal/hr). The hydrogen enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame stability was examined for different amount of hydrogen addition to the methane fuel, different combustion air flow rates and swirl strengths by comparing equivalence ratio at the lean flame limit. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using gas analyzers, and OH chemiluminescence techniques to provide information about species concentration of emission gases and flowfield. The results of NOx and CO emissions were compared with a diffusion flame type combustor. The results show that the lean stability limit depends on the amount of hydrogen addition and the swirl intensity. The lean stability limit is extended by hydrogen addition, and is reduced for higher swirl intensity at lower equivalence ratio. The addition of hydrogen increases the NOx emission, however, this effect can be reduced by increasing either the excess air or swirl intensity. The NOx emission of hydrogen enriched methane premixed flame was lower than the corresponding diffusion flame under the fuel lean condition.

Effect of Oxygen Enriched Air on the Combustion of a Turbulent Diffusion Flat Flame (산소부화공기가 난류 확산 평면화염의 연소에 미치는 영향)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • Combustion using oxygen enriched air is an energy saving technology that can increase thermal efficiency by the improvement of burning rate and by the high temperature flame. Flame figures, OH radical intensities, temperature distributions and emission concentrations were measured according to oxygen enriched concentration and swirl number in a turbulent diffusion flat flame. It appeared that flame figure became flat and NO concentration decreased with increase of swirl number, and that the flame temperature increased high with increase of oxygen enriched concentration. In particular, it was most significant between oxygen concentration $40{\sim}60%$.

  • PDF

A Study on the Combustion Characteristics of a Hybrid Cyclone Jet Combustor (하이브리드 사이클론 제트 연소기의 연소특성에 관한 연구)

  • Jung, Won-Suk;Hwang, Chul-Hong;Lee, Gyou-Young;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.149-155
    • /
    • 2002
  • A promising new approach to achieve low pollutants emission and improvement of flame stabilities is tested experimentally using a hybrid cyclone jet combustor employing both premixed and diffusion combustion mode, Three kind of nozzles are used for LNG(Liquified Natural Gas) as a fuel. The combustor is operated by two method, One is ATI(Air Tangential Injection) mode, generated swirl flow by air as general swirl combustor, and the other is PTI(Premixed gas Tangential Injection) mode, The PTI mode consists of diffusion flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion flame. The results showed that the stable region of the PTI mode is more larger than the ATI mode. In addition, the reduction of NOx emission in PTI mode, as compared with that for the ATI mode is at least 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, the cyclone jet combustor has high performance of flame stability.

  • PDF

The Combustion Characteristics of a New Cyclone Jet Hybrid Combustor for Low Pollutant Emission and High Flame Stability (저공해와 고안정성을 위한 신개념의 사이클론 제트 하이브리드 연소기의 연소특성)

  • Jung, Won-Suk;Hwang, Chul-Hong;Lee, Gyou-Young;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.146-153
    • /
    • 2004
  • A Promising new approach to achieve low pollutant emissions and improvement of flame stability is tested experimentally using a cyclone jet hybrid combustor employing both premixed and diffusion combustion mode. Three kinds of nozzle are tested for mixing enhancement of fuel and air. The LNG (Liquified Natural Gas) is used as a fuel. The combustor is operated by two methods. One is DC (Diffusion Combustion) mode generated swirl flow by air as general swirl combustor, and the other is HC (Hybrid Combustion) mode. The HC mode consists of diffusion jet flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion jet flame. The results showed that the flame stability of HC mode is significantly enhanced than that of DC mode through the change of mixing characteristics by modifications of fuel nozzle. In addition, the reductions of CO and NOx emission in HC mode, as compared with that for the DC mode, is large than about 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, it is identified that the cyclone jet hybrid combustor has the high performance of flame stability.

Effects of Swirl/Shear-coaxial Injector on the Dynamic Behavior of Gaseous Methane-Gaseous Oxygen Diffusion Flame (스월/전단 동축형 인젝터가 기체메탄-기체산소 확산화염의 동역학적 거동에 미치는 영향)

  • Hong, Joon Yeol;Bae, Dae Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • To analyze the dynamic behavior and the structure of the gaseous methane-gaseous oxygen diffusion flame formed by a swirl/shear-coaxial injector, combustion experiments were carried out under different propellant injection conditions. As a result, the OH radical emission intensity of the diffusion flame visualized through chemiluminescence was observed to increase as the propellant mass flow and the momentum flux ratio increased. And flames with swirl showed a more high radical emission intensity than those without swirl.

A Study on the Measurement of Flame Visualization, Temperature and Soot for Diffusion Flame in a Diesel Engine Using High-Speed Camera (고속카메라를 이용한 디젤엔진내의 화염 가시화, 화염의 온도 및 매연 측정에 관한 연구)

  • Han, Yong-Taik;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.132-140
    • /
    • 2007
  • The temperature and soot of the visualized diesel engine's turbulent flow of the flame was measured qualitatively. In the combustion chamber, in order to judge the affect that the swirl current has on the current ratio two heads with different ratios were used. Using a high speed camera, the results were analyzed using flame visualization. In order to measure the temperature and soot of the turbulent flames like diesel flames, two color methods were used to acquire temperature and the soot of the flames according to the conditions through analyzing the two wavelengths of the flames. It was possible to measure the highest temperature of the non-swirl head visualized engine, which is approximately 2400K, and that swirl head engine managed up to 2100K. With respect to the visualized diesel engine soot, we got the grasp of the KL factor which bears the qualitative information of the soot. This study is dedicated to suggesting the possibility of measuring not only the temperature but also soot of the diffusion flame of the diesel engine turbulent flames.

Combustion Characteristics of Methane-Oxygen Diffusion Flame Formed by Swirl-coaxial Injector (스월 동축형 인젝터에 의해 형성되는 메탄-산소 확산화염의 연소특성)

  • Bae, Seong Hun;Hong, Joon Yeol;Kim, Heuy Dong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • In order to analyze combustion characteristics of methane-oxygen diffusion flame in a model combustor, combustion experiments were carried out under various spray conditions of propellant scrutinizing combustion stability limit and flame shapes. As the propellant approached the theoretical equivalence ratio condition, a stable detached flame was observed even under high oxygen Reynolds number. And the length of the visible flame increased and the lift-off distance of the flame exhibited a tendency toward decrease. Due to the swirl effect of the propellant by the swirl-coaxial injector, a wide and short flame was produced. Thus, it may be appropriate to employ the swirl-coaxial injector in thrusters having a limited physical dimension.

Structural Characteristics of Turbulent Diffusion Flame Combusted with Simulated Coal Syngas

  • Park, Byung-Chul;Kim, Hyung-Taek;Chun, Won-Gee
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.350-358
    • /
    • 2002
  • The present work determined the flame structure characteristics of coal syngas combusted inside swirl burners with various nozzle types. Fuel nozzle types are largely classified into two groups of axial and tangential. Experiments were carried out for investigating the effects of fuel nozzle geometry, fuel composition ratio, heating rate, excess air, and degree of swirl on the turbulent diffusion flame structure. To determine the characteristics of the flame structure, axial type fuel nozzle diameter of laboratory-scale combustor is varied to 1.23, 1.96, and 2.95 ㎜ and the direction of tangential type nozzles are varied to radial, clockwise, and counter-clockwise. The comparison of the experimental results was performed to understand functional parameters relating the flame structure. Data analysis showed that the vertical straight flame height generally decreased with increasing swirl number and decreasing axial type nozzle diameter. Flame height established with tangential type nozzle is 3 times shorter than that with vertical type. The flame structures among the 3 different tangential fuel nozzles relatively showed no particular difference. By increasing the heating rate, the width of flame increased generally in both vertical and tangential flame. Within the present experimental parameters of the investigation, flame structure is mainly depends on the nozzle type of the combustor. The visually investigated flame lengths are confirmed through the analysis of temperature profile of each flame.