• Title/Summary/Keyword: Swing out

Search Result 146, Processing Time 0.026 seconds

A Study on the AWS (All Wheel Steering) ECU Test considering Requirement for Behavior of Bi-modal Tram (바이모달 트램의 거동을 요구사항으로 고려한 전차를 조향 시스템 테스트에 관한 연구)

  • Lee, Jin-Hee;Park, Tae-Won;Lee, Soo-Ho;Jung, Ki-Hyun;Choi, Kyung-Hee;Moon, Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.229-238
    • /
    • 2009
  • In this paper, AWS ECU test method, which is considering behavior of a Bi-modal tram, is described. In order to evaluate the performance of an electronic automotive ECU, the method which combines HILS (Hardware In the Loop Simulation) and RBT (Requirement Based Testing) is introduced. HILS is the method to predict the behavior of a vehicle adopting an ECU. The behavior of a Bi-modal tram can be analyzed by using the vehicle dynamic model. Requirement Based Testing compare the outputs of a real system with a virtual electronic unit (oracle) which created by the requirements. Rear axles of the Bi-modal tram are independently controlled by two AWS ECU. Especially, swing out can happen when an articulated vehicle is operated in the curved road. Therefore dynamic behaviour of a Bi-modal tram is considered at this situation. Through this study, the reliability of ECU can be verified economically and safely using the proposed test method before conducting the track test.

  • PDF

The Comparative Analysis of Kinematic And Emg on Power Walking and Normal Gait (파워워킹과 일반보행의 운동학적 및 EMG 비교분석)

  • Cho, Kyu-Kwon;Kim, You-Sin;Kim, Eun-Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.85-95
    • /
    • 2006
  • The purpose of this study of which 10 University students in their twenties are the objects was to examine the causal differences of kinematic and electromyography during power walking and normal gait. We came to the following conclusions. 1) It took less time to stance phase, swing phase and whole gait time during power walking compared with normal gait. 2) During power walking, the step length and step length and lower limb length are longer than that of normal gait. 3) During power walking, ankle joint angle became more plantar flexed at LIC and RTO, knee joint angle become more flexed, so did hip joint angle at LIC and RTO. Besides during power walking the shoulder joint angle movement was bigger and elbow joint angle was more flexed as the trait of power walking. 4) During power walking, through out the phase the muscle activity of all muscle was higher expecially the muscle activity of Biceps brachii, gastrocnemius medialis, gastrocnemius lateralis, Soleus was higher. Therefore during power walking, one's scope of activity and muscle activity is relatively higher than those of normal gait, so power walking helps one strengthen muscular power and energy metabolism. This will be useful information for those who are interested in diet and well-being.

Body Impedance Control for Walking Stabilization of a Quadrupedal Robot (4족 보행 로봇의 걸음새 안정화를 위한 몸체 임피던스 제어)

  • Lee, Soo-Yeong;Hong, Ye-Seon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.257-263
    • /
    • 2000
  • One of the basic assumptions in the static gait design for a walking robot is that the weight of leg should be negligible compared to that of body, so that the total gravity center is not affected by swing of a leg. Based on the ideal assumption of zero leg-weight, conventional static gait has been simply designed for the gravity center of body to be inside the support polygon, consisting of each support leg's tip position. In case that the weight of leg is relatively heavy, however, while the gravity center of body is kept inside the support polygon, the total gravity center of walking robot can be out of the polygon due to weight of a swinging leg, which causes instability in walking. Thus, it is necessary in the static gait design of a real robot a compensation scheme for the fluctuation in the gravity center. In this paper, a body impedance control is proposed to obtain the total gravity center based on foot forces measured from load cells of a real walking robot and to adjust its position to track the pre-designed trajectory of the corresponding ideal robot's body center. Therefore, the walking stability is secured even in case that the weight of leg has serious influence on the total gravity center of robot.

  • PDF

Development of Small Crane Control System to Improve Fishery Operations (어장작업 개선을 위한 소형 크레인 조작제어장치 개발)

  • Jeong, Heon;Lee, Sang-Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.625-632
    • /
    • 2014
  • It is required a lot of strength in aquaculture, such as dragging up or moving heavy loads. So, a helper system like excavator at construction is need for fishermen. As most of HFMSC(Hydraulic Fishery Managing Small Crane)s are operated based on ON/OFF control, it can make sway the contents in the crane. In worse case, it could threaten workers. In this paper, we development the MICOM based controller which can reduce the swing sway. This paper describes the hydraulic characteristics, the design method of controller and the control algorithms. And, the proposed controller show the efficiency to carry out the experimental validation.

Monitoring System with PLC I/O for Car Parking Lot (Car Parking Lot 모니터링 시스템)

  • Lee, Seong-Jae;Kim, Jae-Yang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.511-512
    • /
    • 2007
  • The monitoring system has won acceptance as a premium mark that identifies the highest standard of product quality in advanced industry. The TOP features with multi-I/O ports and VGA & RCA TV-out ports supporting mirroring & multiple dual-display modes by windows 0/5. With the choice of versatile stands, panel mount, or VESA wall-mount swing arm and connecting to modem. Wireless keyboard, Customer Display and Card Reader, is your idea Panel system for the application of TOP(Touch Operation Pannel), KIOSK, or Office / Factory Automation. TOP is the hardware and software product that transacts all kind of functions for advanced technology equipment to button, switch, voice and graph etc so that let consumer use easily Industrial HMI System Touch Panel. System characteristics: Easy of use and flexibility to the user, Present a high value solution and advanced function for many Application, Factory Automation, Office Automation, Building Automation System, Information Service System, etc. Analog Touch - 2MB Flash Memory for Saving Screen Data - RS-232C/422 Serial Port - Multi Language Support.

  • PDF

Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor

  • Chuan, M.W.;Wong, K.L.;Hamzah, A.;Rusli, S.;Alias, N.E.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.91-99
    • /
    • 2021
  • Silicene is an emerging two-dimensional (2D) semiconductor material which has been envisaged to be compatible with conventional silicon technology. This paper presents a theoretical study of uniformly doped silicene with aluminium (AlSi3) Field-Effect Transistor (FET) along with the benchmark of device performance metrics with other 2D materials. The simulations are carried out by employing nearest neighbour tight-binding approach and top-of-the-barrier ballistic nanotransistor model. Further investigations on the effects of the operating temperature and oxide thickness to the device performance metrics of AlSi3 FET are also discussed. The simulation results demonstrate that the proposed AlSi3 FET can achieve on-to-off current ratio up to the order of seven and subthreshold swing of 67.6 mV/dec within the ballistic performance limit at room temperature. The simulation results of AlSi3 FET are benchmarked with FETs based on other competitive 2D materials such as silicene, graphene, phosphorene and molybdenum disulphide.

A Study of a Hydraulic Excavator's Test to Verify of Payload Estimation by Bucket's Motion Equation (유압 굴착기 실험을 통한 작업량 추정법 확인에 관한 연구)

  • Jeong, Hwang Hun;Lee, Min Su;Shin, Young Il
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.11-16
    • /
    • 2022
  • It is important to measure the excavator's work productivity that estimates the bucket's payloads on a process. If the bucket isn't filled at every working cycle, the excavator's operator has to drive the machine more to achieve his work quota. If bucket is filled over with the load, the other way around, the transferred object has to spread out on the workplace. That causes additional work to clean the site. This paper proposes a method that can estimate the bucket's payload to improve the excavator's work productivity. This method assumes that the excavator is a lumped mass system. And it uses a 3 points angle (boom link, arm link, swing) and 2 points pressure (boom cylinder's input port and output port) of measurable data. Depending on assumptions, the bucket's payload can be calculated by the payload's motion equation. And this suggested method can be verified by simple experiments.

Adsorption Dynamics of Activated Carbon and Carbon Molecular Sieve Beds for Ethylene Recovery (배가스로부터에틸렌 회수를 위한 활성탄과 CMS 흡착탑의 흡착거동 특성)

  • Yoon, Ki-Yong;Jun, Phillip;Woo, En-Ji;Ahn, Hyungwoong;Lee, Chang-Ha
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.527-534
    • /
    • 2012
  • The adsorption dynamics of activated carbon (AC) and carbon molecular sieve (CMS) beds were studied to recover ethylene from FCC fuel gas. In this study, the FCC fuel gas used consisted of six-component mixture ($CH_4/C_2H_4/C_2H_6/C_3H_6/N_2/H_2$,32:15:14:2:12:25 vol.%). And the breakthrough experiments of adsorption and desorption were carried out. The breakthrough sequence in the AC bed was $H_2$ < $N_2$ < $CH_4$ < $C_2H_4$ < $C_2H_6$ while the sequence in the CMS bed was $H_2$ < $CH_4$ < $N_2$ < $C_2H_6$ < $C_2H_4$. The separation performance of the CMS bed during the adsorption step was lower than that of the AC bed. However, due to the characteristics of kinetic separation, the CMS bed could remove $CH_4/N_2$ as well asthe molecules that are larger than $C_2H_6$, which was not easy to be done by the AC bed. Since it was hard to regenerate the adsorption bed by simple depressurization, vacuum regeneration should be adopted. As a result, the pressure vacuum swing adsorption (PVSA) process, consisting of CMS pretreatment process and AC main process, was suggested to recover ethylene efficiently.

Analysis of Success Factors for Effective Stroke of Golf Beginners (골프 입문자들의 유효타에 대한 성공요인 분석)

  • Woo, Byung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1190-1199
    • /
    • 2020
  • The purpose of this study is to analyze the variables affecting the effective stroke in the swing performed through 12 weeks of training for golf beginners, and to provide basic data on the effective stroke factors for the golf beginners to settle on the fairway. Twenty subjects were participate in the study (age: 21.35±1.69 yrs, height: 176.75±7.99 cm, weight: 70.70±9.76 kg). All subjects were subjected to a 12-week golf training, and trackman 4 was used in the 12th week to calculate variables affecting the effective stroke during a golf swing. Trackman data was divided into club-variables and ball-variables, and a binary logistic regression analysis was performed to find out the variables affecting effective strokes. In club-variables, high dynamic loft and low face angles were found in effective stroke, and in ball-variables, fast ball speed, large smash factor, high launch angle, and many spin rates were also found in effective stroke. As a result of the binary logistic regression analysis of club-variables, the probability of an effective stroke increased as the club speed and dynamic loft increased, and the probability of an effective stroke decreased as the face angle increased. The influence of effective stroke in the club-variables was in the order of dynamic loft, face angle, and club speed. In the ball-variable, the probability of an effective stroke increased when the lunch angle increased, and the probability of an effective stroke decreased as the lunch direction increased. As a condition to increase the probability of effective stroke based on the results, it is necessary to increase the club speed through high dynamic loft and low face angle during swing through continuous practice. Through this, the probability of effective stroke through increasing the launch angle and decreasing the launch direction will increase.

A New Structural Carry-out Circuit in Full Adder (새로운 구조의 전가산기 캐리 출력 생성회로)

  • Kim, Young-Woon;Seo, Hae-Jun;Han, Se-Hwan;Cho, Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.1-9
    • /
    • 2009
  • A full adders is an important component in applications of digital signal processors and microprocessors. Thus it is imperative to improve the power dissipation and operating speed for designing a full adder. We propose a new adder with modified version of conventional static CMOS and pass transistor logic. The carry-out generation circuit of the proposed full adder is different from the conventional XOR-XNOR structure. The output Cout of module III is generated from input A, B and Cin directly without passing through module I as in conventional structure. Thus output Cout is faster by reducing operation step. The proposed module III uses the static CMOS logic style, which results full-swing operation and good driving capability. The proposed 1bit full adder has the advantages over the conventional static CMOS, CPL, TGA, TFA, HPSC, 14T, and TSAC logic. The delay time is improved by 4.3% comparing to the best value known. PDP(power delay product) is improved by 9.8% comparing to the best value. Simulation has been carried out using a $0.18{\mu}m$ CMOS design rule for simulation purposes. The physical design has been verified using HSPICE.