Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.1.091

Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor  

Chuan, M.W. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Wong, K.L. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Hamzah, A. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Rusli, S. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Alias, N.E. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Lim, C.S. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Tan, M.L.P. (School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia)
Publication Information
Advances in nano research / v.10, no.1, 2021 , pp. 91-99 More about this Journal
Abstract
Silicene is an emerging two-dimensional (2D) semiconductor material which has been envisaged to be compatible with conventional silicon technology. This paper presents a theoretical study of uniformly doped silicene with aluminium (AlSi3) Field-Effect Transistor (FET) along with the benchmark of device performance metrics with other 2D materials. The simulations are carried out by employing nearest neighbour tight-binding approach and top-of-the-barrier ballistic nanotransistor model. Further investigations on the effects of the operating temperature and oxide thickness to the device performance metrics of AlSi3 FET are also discussed. The simulation results demonstrate that the proposed AlSi3 FET can achieve on-to-off current ratio up to the order of seven and subthreshold swing of 67.6 mV/dec within the ballistic performance limit at room temperature. The simulation results of AlSi3 FET are benchmarked with FETs based on other competitive 2D materials such as silicene, graphene, phosphorene and molybdenum disulphide.
Keywords
doped silicene; ballistic transport; 2D material; I-V characteristics; nanotransistor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chuan, M., Wong, K., Hamzah, A., Rusli, S., Alias, N., Lim, C. and Tan, M. (2020a), "Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties", Adv. Nano Res., Int. J., 9(2), 105-112. https://doi.org/10.12989/anr.2020.9.2.105.   DOI
2 Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020b), "2D honeycomb silicon: A review on theoretical advances for silicene field-effect transistors", Curr. Nanosci., 16(4), 595-607. https://doi.org/10.2174/1573413715666190709120019.   DOI
3 Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020c), "Electronic properties and carrier transport properties of low-dimensional aluminium doped silicene nanostructure", Physica E Low Dimens. Syst. Nanostruct., 116, 113731. https://doi.org/10.1016/j.physe.2019.113731.   DOI
4 Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2020d), "A review of the top of the barrier nanotransistor models for semiconductor nanomaterials", Superlatt. Microstruct., 140, 106429. https://doi.org/10.1016/j.spmi.2020.106429.   DOI
5 Ding, Y. and Ni, J. (2009), "Electronic structures of silicon nanoribbons", Appl. Phys. Lett., 95(8), 083115. https://doi.org/10.1063/1.3211968.   DOI
6 Ding, Y. and Wang, Y. (2013), "Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties", J. Phys. Chem. C, 117(35), 18266-18278. https://doi.org/10.1021/jp407666m.   DOI
7 Dong, Z. and Guo, J. (2017), "Assessment of 2-D transition metal dichalcogenide FETs at sub-5-nm gate length scale", IEEE Trans. Electron. Devices, 64(2), 622-628. https://doi.org/10.1109/TED.2016.2644719.   DOI
8 Eshkalak, M.A., Faez, R. and Haji-Nasiri, S. (2015), "A novel graphene nanoribbon field effect transistor with two different gate insulators", Physica E Low Dimens. Syst. Nanostruct., 66, 133-139. https://doi.org/10.1016/j.physe.2014.10.021.   DOI
9 Goswami, A. and Gawande, M.B. (2019), "Phosphorene: Current status, challenges and opportunities", Front. Chem. Sci. Eng., 2019, 1-14. https://doi.org/10.1007/s11705-018-1783-y.   DOI
10 Ghannadpour, S. and Moradi, F. (2019), "Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique", Adv. Nano Res., Int. J., 7(5), 311-324. http://doi.org/10.12989/anr.2019.7.5.311.   DOI
11 Harrison, W.A. (2004), Elementary Electronic Structure: Revised, World Scientific Publishing Company, Singapore. https://doi.org/10.1142/5432.   DOI
12 Hosseini, M. and Karami, H. (2018), "Strain effects on the DC performance of single-layer TMD-based double-gate field-effect transistors", J. Comput. Elec., 17(4), 1603-1607. https://doi.org/10.1007/s10825-018-1227-4.   DOI
13 Hsu, H.C., Lu, Y.H., Su, T.L., Lin, W.C. and Fu, T.Y. (2018), "Single crystalline silicene consist of various superstructures using a flexible ultrathin Ag (111) template on Si (111)", Semicond. Sci. Technol., 33(7), 075004. https://doi.org/10.1088/1361-6641/aaad88.   DOI
14 Izhnin, I.I., Kurbanov, K.R., Lozovoy, K.A., Kokhanenko, A.P., Dirko, V.V. and Voitsekhovskii, A.V. (2020), "Epitaxial fabrication of 2D materials of group IV elements", Appl. Nanosci., 10, 4375-4383. https://doi.org/10.1007/s13204-020-01372-4.   DOI
15 Liu, C.C., Feng, W. and Yao, Y. (2011), "Quantum spin Hall effect in silicene and two-dimensional germanium", Phys. Rev. Lett., 107(7), 076802. https://doi.org/10.1103/PhysRevLett.107.076802.   DOI
16 Kazmierski, T.J., Zhou, D., Al-Hashimi, B.M. and Ashburn, P. (2009), "Numerically efficient modeling of CNT transistors with ballistic and nonballistic effects for circuit simulation", IEEE Trans, Nanotechnol., 9(1), 99-107. https://doi.org/10.1109/TNANO.2009.2017019.   DOI
17 Lam, K.T., Dong, Z. and Guo, J. (2014), "Performance limits projection of black phosphorous field-effect transistors", IEEE Electron. Device Lett., 35(9), 963-965. https://doi.org/10.1109/LED.2014.2333368.   DOI
18 Leong, C.H., Chuan, M.W., Wong, K.L., Najam, F., Yu, Y.S. and Tan, M.L.P. (2020), "Compact device modelling of interface trap charges with quantum capacitance in MoS2-based field-effect transistors", Semicond. Sci. Technol., 35(4), 045023. https://doi.org/10.1088/1361-6641/ab74f2.   DOI
19 Lim, W.H., Hamzah, A., Ahmadi, M.T. and Ismail, R. (2018), "Performance analysis of one dimensional BC2N for nanoelectronics applications", Physica E Low Dimens. Syst. Nanostruct., 102, 33-38. https://doi.org/10.1016/j.physe.2018.04.005.   DOI
20 Lima, M.P., Fazzio, A. and da Silva, A.J.R. (2018), "Silicene-Based FET for Logical Technology", IEEE Electron. Device Lett., 39(8), 1258-1261. https://doi.org/10.1109/LED.2018.2848640.   DOI
21 Lu, A.K.A., Pourtois, G., Luisier, M., Radu, I.P. and Houssa, M. (2017), "On the electrostatic control achieved in transistors based on multilayered MoS2: A first-principles study", J. Appl. Phys., 121(4), 044505. https://doi.org/10.1063/1.4974960.   DOI
22 Lundstrom, M. and Jeong, C. (2013), Near-Equilibrium Transport: Fundamentals and Applications, World Scientific Publishing Company, Singapore. https://doi.org/10.1142/7975.   DOI
23 Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A. (2011), "Single-layer MoS 2 transistors", Nat. Nanotechnol., 6(3), 147. https://doi.org/10.1038/nnano.2010.279.   DOI
24 Lundstrom, M.S. and Antoniadis, D.A. (2014), "Compact models and the physics of nanoscale FETs", IEEE Trans. Electron. Devices, 61(2), 225-233. https://doi.org/10.1109/TED.2013.2283253.   DOI
25 Md Arshad, M., Othman, N. and Hashim, U. (2015), "Fully depletion of advanced silicon on insulator MOSFETs", Crit. Rev. Solid State Mater. Sci., 40(3), 182-196. https://doi.org/10.1080/10408436.2014.978447.   DOI
26 Salimian, F. and Dideban, D. (2019), "Comparative study of nanoribbon field effect transistors based on silicene and graphene", Mater. Sci. Semicond. Process., 93, 92-98. https://doi.org/10.1016/j.mssp.2018.12.032.   DOI
27 Ni, Z., Zhong, H., Jiang, X., Quhe, R., Luo, G., Wang, Y., Ye, M., Yang, J., Shi, J. and Lu, J. (2014), "Tunable band gap and doping type in silicene by surface adsorption: Towards tunneling transistors", Nanoscale, 6(13), 7609-7618. https://doi.org/10.1039/c4nr00028e.   DOI
28 Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Katsnelson, M.I., Grigorieva, I., Dubonos, S. and Firsov, A.A. (2005), "Two-dimensional gas of massless Dirac fermions in graphene", Nature, 438(7065), 197. https://doi.org/10.1038/nature04233.   DOI
29 Patel, N. and Choudhary, S. (2017), "Current saturation and kink effect in zero-bandgap double-gate silicene field-effect transistors", Superlatt. Microstruct., 110, 155-161. https://doi.org/10.1016/j.spmi.2017.08.049.   DOI
30 Poljak, M. (2020), "Impact of width scaling and parasitic series resistance on the performance of silicene nanoribbon MOSFETs", IEEE Trans. Electron. Devices, 67(11), 4705-4708. https://doi.org/10.1109/TED.2020.3017465   DOI
31 Stepniak-Dybala, A. and Krawiec, M. (2019), "Formation of silicene on ultra-thin Pb (111) films", J. Phys. Chem. C, 123(27), 17019-17025. https://doi.org/10.1021/acs.jpcc.9b04343.   DOI
32 Sarebanha, B., Ahmadi, S. and Eslami, L. (2017), "Impact of phosphorus superlattices on charge and spin dependent transport properties of zigzag silicene nanoribbons", Physica E Low Dimens. Syst. Nanostruct., 89, 139-147. https://doi.org/10.1016/j.physe.2017.02.013.   DOI
33 Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., Int. J., 8(4), 265-276. http://doi.org/10.12989/anr.2020.8.4.265.   DOI
34 Si, N. and Niu, T. (2020), "Epitaxial growth of elemental 2D materials: What can we learn from the periodic table?", Nano Today, 30, 100805. https://doi.org/10.1016/j.nantod.2019.100805.   DOI
35 Sun, M., Ren, Q., Wang, S., Yu, J. and Tang, W. (2016), "Electronic properties of Janus silicene: New direct band gap semiconductors", J. Phys. D Appl. Phys., 49(44), 445305. https://doi.org/10.1088/0022-3727/49/44/445305.   DOI
36 Supriyo, D. (2017), Lessons From Nanoelectronics: A New Perspective On Transport - Part A: Basic Concepts, World Scientific, Singapore. https://doi.org/10.1142/10440   DOI
37 Takeda, K. and Shiraishi, K. (1994), "Theoretical possibility of stage corrugation in Si and Ge analogs of graphite", Phys. Rev. B, 50(20), 14916. https://doi.org/10.1103/PhysRevB.50.14916.   DOI
38 Tao, L., Cinquanta, E., Chiappe, D., Grazianetti, C., Fanciulli, M., Dubey, M., Molle, A. and Akinwande, D. (2015), "Silicene field-effect transistors operating at room temperature", Nat. Nanotechnol., 10(3), 227. https://doi.org/10.1038/NNANO.2014.325.   DOI
39 Saad, I., Tan, M.L., Hii, H., Ismail, R. and Arora, V.K. (2009), "Ballistic mobility and saturation velocity in low-dimensional nanostructures", Microelectron. J., 40(3), 540-542. https://doi.org/10.1016/j.mejo.2008.06.046.   DOI
40 Rahman, A., Guo, J., Datta, S. and Lundstrom, M.S. (2003), "Theory of ballistic nanotransistors", IEEE Trans. Electron. Devices, 50(9), 1853-1864. https://doi.org/10.1109/TED.2003.815366.   DOI
41 Sadeddine, S., Enriquez, H., Bendounan, A., Das, P.K., Vobornik, I., Kara, A., Mayne, A.J., Sirotti, F., Dujardin, G. and Oughaddou, H. (2017), "Compelling experimental evidence of a Dirac cone in the electronic structure of a 2D silicon layer", Sci. Rep., 7, 44400. https://doi.org/10.1038/srep44400.   DOI
42 Wong, K.L., Chuan, M.W., Alias, N.E., Hamzah, A., Lim, C.S. and Tan, M.L.P. (2019), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., Int. J., 7(3), 207-219. http://doi.org/10.12989/anr.2019.7.3.209.   DOI
43 Thriveni, G. and Ghosh, K. (2019), "Theoretical analysis and optimization of high-k dielectric layers for designing high-performance and low-power-dissipation nanoscale double-gate MOSFETs", J. Comput. Elec., 18(3), 924-940. https://doi.org/10.1007/s10825-019-01353-z.   DOI
44 Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B. and Le Lay, G. (2012), "Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon", Phys. Rev. Lett., 108(15), 155501. https://doi.org/10.1103/PhysRevLett.108.155501.   DOI
45 Wang, X., Zhao, L. and Liu, J. (2019), "Carbon nanotube/graphene composites as thermal interface materials for electronic devices", Fuller. Nanotub. Carbon Nanostruct., 27(12), 907-913. https://doi.org/10.1080/1536383X.2019.1660647.   DOI
46 Wong, K.L., Chuan, M.W., Hamzah, A., Rusli, S., Alias, N.E., Sultan, S.M., Lim, C.S. and Tan, M.L.P. (2020), "Performance metrics of current transport in pristine graphene nanoribbon field effect transistors using recursive non-equilibrium Green's function approach", Superlatt. Microstruct., 145, 106624. https://doi.org/10.1016/j.spmi.2020.106624   DOI
47 Ye, P., Ernst, T. and Khare, M.V. (2019), "The last silicon transistor: Nanosheet devices could be the final evolutionary step for Moore's Law", IEEE Spectrum, 56(8), 30-35. https://doi.org/10.1109/MSPEC.2019.8784120.   DOI
48 Arora, V.K. (2015), Nanoelectronics: Quantum Engineering of Low-Dimensional Nanoensembles, CRC Press, New York, USA. https://doi.org/10.1201/b18131.   DOI
49 Zhao, J., Liu, H., Yu, Z., Quhe, R., Zhou, S., Wang, Y., Liu, C.C., Zhong, H., Han, N. and Lu, J. (2016), "Rise of silicene: A competitive 2D material", Prog. Mater. Sci., 83, 24-151. https://doi.org/10.1016/j.pmatsci.2016.04.001.   DOI
50 Ahmadi, M.T., Ismail, R., Tan, M.L. and Arora, V.K. (2008), "The ultimate ballistic drift velocity in carbon nanotubes", J. Nanomater., 2008, 769250. https://doi.org/10.1155/2008/769250.   DOI
51 Badaroglu, M. (2018), International Roadmap for Devices and Systems (IRDS), IEEE, USA. https://irds.ieee.org.
52 Chen, J., Wang, X.F., Vasilopoulos, P., Chen, A.B. and Wu, J.C. (2014), "Single and multiple doping effects on charge transport in zigzag silicene nanoribbons", Chemphyschem, 15(13), 2701-2706. https://doi.org/10.1002/cphc.201402171.   DOI
53 Chhowalla, M., Jena, D. and Zhang, H. (2016), "Two-dimensional semiconductors for transistors", Nat. Rev. Mater., 1(11), 16052. https://doi.org/10.1038/natrevmats.2016.52.   DOI
54 Chuan, M.W., Wong, K.L., Hamzah, A., Riyadi, M.A., Alias, N.E. and Tan, M.L.P. (2019). "Electronic properties of silicene nanoribbons using tight-binding approach", Proceedings of the 2019 International Symposium on Electronics and Smart Devices (ISESD), Bali, Indonesia, October. https://doi.org/10.1109/ISESD.2019.8909598.   DOI