• Title/Summary/Keyword: Swing compressor

Search Result 4, Processing Time 0.019 seconds

Numerical Performance Analysis of the Swing Compressor (스윙 압축기의 수치해석적 성능평가)

  • Moon, Seok-Hwan;Noh, Ki-Youl;Sa, Bum-Dong;Yang, Jang-Sik;Choi, Gyung-Min;Kim, Duck-Jool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.77-84
    • /
    • 2012
  • Numerical performance analysis of the vane-roller integral type swing compressor was conducted. The swing compressor has been investigated for the highly efficient air conditioning system. Performance analysis results of the swing compressor were compared with those of a conventional rotary compressor. Mechanical and gas losses of a swing compressor were larger than those of a rotary compressor. However in case of mass flow rate from the discharge port, the swing compressor was about 6.68% higher than the rotary compressor. Hence the EER, the cooling capacity and the compressor work of the swing compressor were about 3.71%, 6.69% and 2.90% higher than the rotary compressor respectively.

CFD Simulation on the Oil Pumping System of a Variable Speed Scroll Compressor with a Swing Pump (스윙펌프를 내장한 가변속 스크롤 압축기의 오일공급시스템에 관한 CFD 시뮬레이션)

  • 조홍현;김용찬;유병길
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.50-58
    • /
    • 2003
  • An analytical study was carried out to investigate the performance of an oil pumping system of a variable speed compressor using a commercial CFD program. The simulations for the oil supplying system with the oil and air mixture were performed by varying compressor speed from 40 Hz to 90 Hz. Comparing the predicted with the measured data on the modified scroll compressor validated the simulation model. The predicted results were consistent with the test data with a maximum deviation of 12.8%. The oil flow rate significantly increased with a rise of compressor speed due to a higher oil flow rate from the swing pump and a greater centrifugal force on oil gallery.

Design and control of extractive distillation for the separation of methyl acetate-methanol-water

  • Wang, Honghai;Ji, Pengyu;Cao, Huibin;Su, Weiyi;Li, Chunli
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2336-2347
    • /
    • 2018
  • The azeotrope of methyl acetate methanol and water was isolated using extractive distillation with water as entrainer. The pressure-swing extractive distillation (PSED) process and vapor side-stream distillation column (VSDC) with the rectifier process were designed to separate the methyl acetate, methanol and water mixture. It was revealed that the VSDC with the rectifier process had a reduction in energy consumption than the PSED process. Four control schemes of the two process were investigated: Double temperature control scheme (CS1), $Q_R/F$ feedforward control of reboiler duty scheme for PESD (CS2), $Q_R/F$ feedback control scheme for VSDC (CS3), the feedback control scheme of sensitive plate temperature of side-drawing distillation column to dominate the compressor shaft speed (CS4). Feed flow and composition disturbance were used to evaluate the dynamic performance. As a result, CS4 is a preferable choice for separation of methyl acetate-methanol-water mixture. A control scheme combining the operating parameters of dynamic equipment with the control indicators of static equipment was proposed in this paper. It means using the sensitive plate temperature of side-drawing column to control the compressor shaft speed. This is a new control scheme for extractive distillation.

R&D Trends and Unit Processes of Hydrogen Station (수소 스테이션의 연구개발 동향 및 단위공정 기술)

  • Moon, Dong Ju;Lee, Byoung Gwon
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.331-343
    • /
    • 2005
  • Development of hydrogen station system is an important technology to commercialize fuel cells and fuel cell powered vehicles. Generally, hydrogen station consists of hydrogen production process including desulfurizer, reformer, water gas shift (WGS) reactor and pressure swing adsorption (PSA) apparatus, and post-treatment process including compressor, storage and distributer. In this review, we investigate the R&D trends and prospects of hydrogen station in domestic and foreign countries for opening the hydrogen economy society. Indeed, the reforming of fossil fuels for hydrogen production will be essential technology until the ultimate process that may be water hydrolysis using renewable energy source such as solar energy, wind force etc, will be commercialized in the future. Hence, we also review the research trends on unit technologies such as the desulfurization, reforming reaction of fossil fuels, water gas shift reaction and hydrogen separation for hydrogen station applications.