• Title/Summary/Keyword: Swing Weight

Search Result 115, Processing Time 0.022 seconds

Weight Transfer Patterns Under the Different Golf Swing Types: a Case Study Involving a Low Handicap Player and a High Handicap Player (I) (골프스윙 방법에 따른 체중이동 패턴에 관한 연구:숙련자와 비숙련자의 케이스 스터디(I))

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.31-49
    • /
    • 2005
  • The purpose of this study was to analyze the weight transfer patterns under the different golf swing types which are full swing control swing and putting stroke. Two women golfers participated in this study, one(165cm, 94.3kg)being classified as a low-handicap(LH)player, the other(165cm, 54.5kg) being classified as a high-handicap(HH) player. Both players are right-handed. Two force plates(Kistler, 9286AA) were synchronized with a motion capture system(Qualisys ProReflex MCU240). Anteriorposterior, mediolateral, and vertical forces were used as an indicator of the pattern of swing. Four discrete positions which are address, top of backswing impact, and finish were identified as an event and three phases which are backswing downswing, and follow-through between he events were also identified. The results showed that, at impact, the total force was 1.24BW ring the full swing 1.17BW during the control stroke, 1.00BW during the putting stroke. Depending on the golf swing types, the differences are existed. At impact, the distribution of forces is different with a low-handicap(LH) player and a high-handicap(HH) player. A LH player has 26% in right foot and 74% in left foot during the full swing 49% in right foot and 51% in left foot during the control swing 49% in right foot and 51% in left foot during the putting stroke. A HH, on the other hand, has 74% in right foot and 26% in left foot during the full swing 62% in right foot and 38% in left foot during the control swing 54% in right foot and 46% in left foot during the putting stroke. From address to top of backswing the amount of vertical forces are changed 43:57(right foot: left foot) to 76:24 during the full swing 47:53(right foot: left foot) to 75:25 during the control swing 50:50(right foot: left foot) to 54:46 during the putting stroke. The biggest weight transfer pattern took place in full swing and the control swing is next, and the putting stroke is the final.

The Interlimb Coordination During Movement Initiation From a Quiet Stance: Manipulation of Swing Limb Kinetics and Kinematics -A Preliminary Study

  • Kim, Hyeong-Dong;Yoon, Bum-Chull
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.79-86
    • /
    • 2006
  • The purpose of the current experiment was to describe interlimb coordination when swing limb conditions are being manipulated by constraining step length or by adding a 5 or 10 pound weight to the swing limb distally. Subjects were asked to begin walking with the right limb to land on the primary target (normal step length) that is 10 cm in diameter. However, if, during movement, the light was illuminated, then the subject had to step on one of the secondary targets (long and short step length). These three step length conditions were repeated while wearing a 5 pound ankle weight and then when wearing a 10 pound ankle weight. Ground reaction force (GRF) data indicated that there were changes in the forces and slopes of the swing and stance Fx GRFs. Long stepping subjects had to increase the propulsive force required to increase step length. Consequently, swing and stance toe-off greatly increased in the long step length condition. Short step length subjects had to adequately adjust step length, which decreased the speed of gait initiation. Loading the swing limb decreased the force and slope of the swing limb. Swing and stance toe-off was longest for the long step length condition, but there was a small difference of temporal events between no weight and weight condition. It appears that subjects modulated GRFs and temporal events differently to achieve the peak acceleration force of the swing and stance limb in response to different tasks. The findings from the current study provide preliminary data, which can be used to further investigate how we modulate forces during voluntary movement from a quiet stance. This information may be important if we are to use this or a similar task to evaluate gait patterns of the elderly and patient populations.

  • PDF

Effect of Rehabilitation Exercise for Golfers on the X-factor and Ground Reaction Force according to Phase of the Golf Swing

  • yoon, Junggyu;Cho, Byungyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.1
    • /
    • pp.1706-1710
    • /
    • 2019
  • Background: Despite frequent shoulder injuries of rotator cuff muscle of golfers by the result of overuse and poor swing mechanics, there is little research on shoulder specific rehabilitation exercises for injured rotator cuff muscle and golf swing Objective: To examined the effect of rehabilitation exercise for golfers on the X factor and ground reaction force (GRF) according to phase of the golf swing. Design: Crossover study Methods: The participants were 13 amateur golfers selected for a 4 week rehabilitation exercise for golfers. A rehabilitation exercise for golfers consisting of 5 steps and 4 items (sleeper stretch, full side plank, push up to plank, high plank knee unders) were applied to all participants. A three dimensional motion analyzer and force platform (SMART-E, BTS, Italy) were used to measure the X factor (angle between shoulder and pelvis at top of back swing) and GRF according to phase of the golf swing. All dependent variables were measured before and after exercise. The collected data was analyzed using the paired t test and SPSS 21.0. Results: The GRF had a statistically significant increase in the impact phase and ratio impact/weight after rehabilitation exercise for golfers (p<.05). The X-factor, GRF in top of back swing and finish were no significant differences between before and after exercise (p>.05). Conclusions: These results suggested that rehabilitation exercise for golfers was effective for increasing GRF in the impact phase and ratio impact/weight for amateur golfer.

Effect of Weight Ball Throw Training on Weight Shifting of Lower Body, Head Speed of Club, and Driving Distance of Amateur Golfers

  • Choi, Woo-Jin;Kim, Tack-Hoon;Oh, Dong-Sik
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.111-117
    • /
    • 2017
  • PURPOSE: To determine the effect of weight ball throw training as a preparatory exercise before golf practice for 8 weeks on back muscle strength, weight shifting of lower body, head speed of club, and driving distance of amateur golfers. METHODS: A total of 18 subjects were randomly assigned to the experimental group (n=9) and the control group (n=9), respectively. For the experimental group, Weight ball throw training was provided to the height of waist and shoulder similar to golf swing with the following schedule: 3 kg weight ball throw training from the first week to the 4th week; 5 kg weight ball throw training from the 5th week to the 8th week. Before and after 8 weeks of training, back muscle strength, weight shifting of lower body, head speed of club, and driving distance of subjects in the two groups were measured. RESULTS: The experimental group showed significant differences in rotational back extension torque, weight shifting of lower body, head speed of club, and driving distance during golf swing (p<.05). However, the control group only showed significant difference in driving distance during golf swing (p<.05). Back extension torque, weight shifting of lower body, and head speed of club showed significant differences between the two groups during golf swing (p<.05). CONCLUSION: Weight ball throw training can positively change rotational back muscle strength, weight shifting of lower body, head speed of club, and driving distance of amateur golfers. Therefore, it might be used as an effective warming up exercise for amateur golfers.

Swing Motion of Miniaturized Humanoid Robot (소형 휴머노이드 로봇의 그네 운동)

  • 이수영;정길도;성영휘;박성훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.267-272
    • /
    • 2004
  • In this Paper, we present analysis on the dynamics of human swing and its realization by a miniaturized humanoid robot. Since the motion of legs is the most important in the swing, the swing system can be approximated as a double pendulum. Based on Lagrangian analysis, the leg motion is designed to make the swing motion as sustained oscillation. In order to detect the peak instant of the swing and to synchronize the leg motion with the swing, we use ADXL acceleration/inclination sensor. The miniaturized humanoid in this paper has total 20 DOFs including 6 DOFs in each leg, 34cm in height, and 2kg in weight. As a result of realization of the swing by the humanoid, the sustained oscillation is verified through experiments.

Mechanical Analysis of golf driving stroke motion (골프드라이빙 스트로크시 역학적 분석)

  • Park, Kwang-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.205-219
    • /
    • 2002
  • This research seeks to identify the plantar pressure distribution graph and change in force in connection with effective golf drive strokes and thus to help ordinary golfers have appropriate understanding on the moving of the center of weight and learn desirable drive swing movements. To this end, we conducted surveys on five excellent golfers to analyze the plantar pressure applied when performing golf drive strokes, and suggested dynamic variables quantitatively. 1) Our research presents the desire movements as follows. For the time change in connection with the whole movement, as a golfer raises the club head horizontally low above ground from the address to the top swing, he makes a semicircle using the left elbow joint and shaft and slowly turns his body, thus lengthening the time. And, as the golfer twists the right waist from the middle swing to the impact with the head taking address movement, and does a quick movement, thus shortening the time. 2) For the change in pressure distribution by phase, to strike a strong shot with his weight imposed from the middle swing to the impact, a golfer uses centrifugal force, fixes his left foot, and makes impact. This showed greater pressure distribution on the left sole than on the right sole. 3) For the force distribution graph by phase, the force in the sole from the address to halfway swing movements is distributed to the left foot with 46% and to the right foot with 54%. And, with the starting of down swing, as the weight shifts to the left foot, the force is distributed to the left sole with 58%. Thus, during the impact and follow through movements, it is desirable for a golfer to allow his left foot to take the weight with the right foot balancing the body. 4) The maximum pressure distribution and average of the maximum force in connection with the whole movement changed as the left (foot) and right (foot) supported opposing force, and the maximum pressure distribution also showed much greater on the left sole.

A Comparative Analysis of X-factor Stretch between Driver and Iron Swing in Male Professional Golfers (남자 프로골퍼의 드라이버와 아이언 스윙 시 X-factor Stretch에 관한 비교 분석)

  • Park, Tae-Jin;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.487-495
    • /
    • 2010
  • The purpose of this study was conducted to make a comparative biomechanical analysis of X-factor and X-factor stretch during driver and iron swing. The subjects were composed of 10 professional golfers with more than 10 years career. The result was as follows: First, the analysis of the back swing with driver and iron swing showed no differences statistically between both the timing in horizontal rotating of shoulder and hip, the time required for X-factor stretch also showed no differences statistically. Second, the back swing with a driver swing showed more maximum horizontal rotation of shoulder and hip joint than the back swing with an iron swing, but the twist of shoulder and hip that was X-factor stretch angle showed no difference. Third, the GRF of the max value for the left and right foot during shoulder and hip horizontal rotation of back swing showed no differences statistically in the movement of driver and iron swing during the back swing, and the GRF of X-factor stretch for the left and right foot showed no differences statistically in driver and iron swing. Therefore the result of this research showed that the operation of torso(X-factor stretch) and weight shifting were similar although the horizontal rotation of body was different during the driver and iron swing.

The Effect of the Modified Bent Arm Torando Exercises to Weight Movement and Muscle Activity when Doing Drive Swing Motion from the Top to Impact Section

  • Bae, Sang Kyu;Yun, Su Bin;Kim, Jong Won;Lee, Jong Kyung;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.4
    • /
    • pp.149-154
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate effects of the modified bent arm tornado exercise on weight shift movement and muscle activity of the impact section in the top of the drive swing. Methods: Twenty subjects were divided professional golfer group and amateur golf group. Subjects were required to complete following modified bent arm tornado exercise. The activity and weight shift of the gluteus group and lower extremity muscles between the two groups were measured and the Wilcoxon rank test was analyzed. Results: The distribution of weight shift in the professional golfer group was higher than that of the amateur golfer group (p<0.05). During the golf downswing of the professional golfer group, muscle activation of the lower extremities was higher than that of the amateur golfer group (p<0.05). The distribution of weight shift after exercise by the amateur golfer group was higher than before (p<0.05). Conclusion: We could confirm was increased significantly of muscle activity and weight shift by applying modified bent arm tornado exercise through this study. This result suggests that exercise is needed to improve weight shift.

A Method for Analyzing and Evaluating the Golf Swing Using the Force Platform Data (지면반력분석기를 이용한 골프 스윙의 분석 평가 방법)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.213-219
    • /
    • 2010
  • The purpose of this study is developing a method to analyze and evaluate a golf swing motion using the ground reaction force (GRF) data. Proper weight shifting is essential for a successful shot in golf swing and this could be evaluated by means of the forces between the feet and ground. GRF during the swing were measured from 15 low-handicapped male golfers including professionals. Four clubs(driver, iron 3, iron 5, and iron 7) were selected to analyze the differences due to different characteristics of club. Swings of each subject were taken using a high speed video camera and GRF data were taken simultaneously by two AMTI force platforms. To simplify the GRF data, forces of the three major component of GRF(vertical, lateral, anterior-posterior force) at 10 predefined temporal events for each trial were selected and the mean of each event were calculated and evaluated. Analyzed vertical GRF (VGRF) data could be divided into two different styles, one-legged and two legged. One-legged style shows good weight transfer to the target leg and most of the previous study shows this style as a typical pattern of good players. Therefore the data from the iron 5 swing obtained from 10 one-legged style golfers are provided as criteria for the evaluation of a swing.

What is the Appropriate Kettlebell Mass for a Kettlebell Swing? (케틀벨 스윙 시 적당한 케틀벨의 무게는 얼마일까?)

  • Kim, Bo Kyeong;Thau, Dao Van;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.308-313
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of different kettlebell mass (30%, 40%, and 50% of the body mass) on kinematics and kinetic variables of kettlebell swing. Method: Total of 16 healthy male who had at least 1 year of kettlebell training experience were participated in this study (age: 31.69 ± 3.46 yrd., height: 173.38 ± 4.84 cm, body mass: 74.53 ± 6.45 kg). In this study, a 13-segments whole-body model (upper trunk, lower trunk, pelvis, both side of forearm, upperarm, thigh, and shank) was used and 26 reflective markers were attached to the body to identify the segments during the movement. A 3-dimensional motion analysis with 8 infrared cameras and 4 channeled EMG was performed to find the effect of kettlebell mass on its swing. To verify the kettlebell mass effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at 𝛼=.05. Results: Firstly, in all lower extremity joints and thoracic vertebrae, a statistically significant change in angle was shown according to an increase in kettlebell mass during kettlebell swing (p<.05). Secondly, in both the up-swing and down-swing phases, the knee joint and ankle joint ROM showed a statistically significant increase as the kettlebell mass increased (p<.05) but no statistically significant difference was found in the hip joint and thoracic spine (p>.05). Lastly, the hamstrings muscle activity was statistically significantly increased as the kettlebell mass increased during up-swing phases (p<.05). Also, as the kettlebell mass increased in P4 of the down swing phase, the gluteus maximus showed a statistically significantly increased muscle activation, whereas the rectus femoris showed a statistically significantly decreased muscle activation (p <.05). Conclusion: As a result of this study, hip extension decreased and knee extension increased at 40% and 50% of body mass, and the spine also failed to maintain neutrality and increased flexion. Also, when kettlebell swings are performed with 50% of body mass, synergistic muscle dominance appears over 30% and 40% of body mass, which is judged to have a risk of potential injury. Therefore, it is thought that for beginners who start kettlebell exercise, swing practice should be performed with 30% of body mass. In addition, even in the case of experienced seniors, as the weight increases, the potential injury risk may increase, so it is thought that caution should be exercised when performing swings with 40% and 50% of body mass. In conclusion, it is thought that increasing the weight after sufficiently training with 30% of the weight of all subjects performing kettlebell swing is a way to maximize the exercise effect as well as prevent injury.