• Title/Summary/Keyword: Swept Source-optical coherence tomography

Search Result 21, Processing Time 0.023 seconds

Post-tuning of Sample Position in Common-path Swept-source Optical Coherence Tomography

  • Park, Jae-Seok;Jeong, Myung-Yung;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.380-385
    • /
    • 2011
  • Common-path interferometers are widely used for endoscopic optical coherence tomography (OCT) because an arbitrary arm length can be chosen for the endoscopic imaging probe. However, the scheme suffers from the limited range of the sample position distance from the end of the imaging probe because the position between the reference reflector and the sample is limited by the optical path-length difference (OPD) to induce an interference signal. In this study, we developed a novel method for compensating the arbitrary sample position in common-path swept-source OCT by adding an extra Mach-Zehnder interferometer in the post-path of the interfered optical signal. Theoretical analysis and an experimental demonstration of imaging depth tuning for the flexible sample position of an endoscopic OCT image are discussed. After post-tuning of sample position distance, the positioning limitation between the reference reflector and the sample can be solved for various sample positions over a range of 26 mm for the cross-sectional images of a fish eye sample.

Implementation of the Wavelength-Swept-Source and Signal Processing for the Frequency Domain Optical Coherence Tomography (주파수영역 광 간섭 단층촬영 시스템을 위한 파장가변 광원 및 신호처리계의 구현)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.309-316
    • /
    • 2007
  • We demonstrate the wavelength swept source and signal processing for the frequency domain optical coherence tomography. The laser output performance is improved by using a semiconductor optical amplifier with a booster amplifier. The laser generates 14 mW of average power of which wavelength shift in the lasing spectral shape is compensated. Adopting a Fabry-Perot etalon and digital signal processing, the broadening of the beat frequency due to the variance of wavelength-sweep-velocity is calibrated. The optical coherence tomography system shows 154.4 kHz of axial scanning speed, 0.95mm of depth range, and $12{\pm}0.37{\mu}m$ of axial resolution.

Comb-spacing-swept Source Using Differential Polarization Delay Line for Interferometric 3-dimensional Imaging

  • Park, Sang Min;Park, So Young;Kim, Chang-Seok
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • We present a broad-bandwidth comb-spacing-swept source (CSWS) based on a differential polarization delay line (DPDL) for interferometric three-dimensional (3D) imaging. The comb spacing of the CSWS is repeatedly swept by the tunable DPDL in the multiwavelength source to provide depth-scanning optical coherence tomography (OCT). As the polarization differential delay of the DPDL is tuned from 5 to 15 ps, the comb spacing along the wavelength continuously varies from 1.6 to 0.53 nm, respectively. The wavelength range of various semiconductor optical amplifiers and the cavity feedback ratio of the tunable fiber coupler are experimentally selected to obtain optimal conditions for a broader 3-dB bandwidth of the multiwavelength spectrum and thus provide a higher axial resolution of $35{\mu}m$ in interferometric OCT imaging. The proposed CSWS-OCT has a simple imaging interferometer configuration without reference-path scanning and a simple imaging process without the complex Fourier transform. 3D surface images of a via-hole structure on a printed circuit board and the top surface of a coin were acquired.

Fabrication and Output Characteristics of a High-Speed Wavelength Swept Mode-Locked Laser (고속 파장가변 모드잠김 레이저의 제작 및 출력특성)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1117-1121
    • /
    • 2007
  • We demonstrate a wavelength swept mode-locked ring laser for the frequency domain optical coherence tomography(FD OCT). A laser is constructed by using a semiconductor optical amplifier, fiber Fabry-Perot tunable filter and 2.6 km fiber ring cavity. Mode-locking is implemented by 2.6 km fiber ring cavity for matching the fundamental or harmonic of cavity roundtrip time to a sweep period. The wavelength sweeps are repetitively generated with the repetition period of 77.2 kHz which is the parallel resonance frequency of Fabry-Perot tunable filter for the low driving current consumption of the fiber Fabry-Perot tunable filter. The wavelength tuning range of the laser is more than FWHM of 61 nm centered at the wavelength of 1320 nm and the linewidth of the source is $0.014{\pm}0.002$ nm.

Optical Imaging Technology for Real-time Tumor Monitoring

  • Shin, Yoo-kyoung;Eom, Joo Beom
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.123-131
    • /
    • 2021
  • Optical imaging modalities with properties of real-time, non-invasive, in vivo, and high resolution for image-guided surgery have been widely studied. In this review, we introduce two optical imaging systems, that could be the core of image-guided surgery and introduce the system configuration, implementation, and operation methods. First, we introduce the optical coherence tomography (OCT) system implemented by our research group. This system is implemented based on a swept-source, and the system has an axial resolution of 11 ㎛ and a lateral resolution of 22 ㎛. Second, we introduce a fluorescence imaging system. The fluorescence imaging system was implemented based on the absorption and fluorescence wavelength of indocyanine green (ICG), with a light-emitting diode (LED) light source. To confirm the performance of the two imaging systems, human malignant melanoma cells were injected into BALB/c nude mice to create a xenograft model and using this, OCT images of cancer and pathological slide images were compared. In addition, in a mouse model, an intravenous injection of indocyanine green was used with a fluorescence imaging system to detect real-time images moving along blood vessels and to detect sentinel lymph nodes, which could be very important for cancer staging. Finally, polarization-sensitive OCT to find the boundaries of cancer in real-time and real-time image-guided surgery using a developed contrast agent and fluorescence imaging system were introduced.

Simple Spectral Calibration Method and Its Application Using an Index Array for Swept Source Optical Coherence Tomography

  • Jung, Un-Sang;Cho, Nam-Hyun;Kim, Su-Hwan;Jeong, Hyo-Sang;Kim, Jee-Hyun;Ahn, Yeh-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.386-393
    • /
    • 2011
  • In this study, we report an effective k-domain linearization method with a pre-calibrated indexed look-up table. The method minimizes k-domain nonlinear characteristics of a swept source optical coherence tomography (SS-OCT) system by using two arrays, a sample position shift index and an intensity compensation array. Two arrays are generated from an interference pattern acquired by connecting a Fabry-Perot interferometer (FPI) and an optical spectrum analyzer (OSA) to the system. At real time imaging, the sample position is modified by location movement and intensity compensation with two arrays for linearity of wavenumber. As a result of evaluating point spread functions (PSFs), the signal to noise ratio (SNR) is increased by 9.7 dB. When applied to infrared (IR) sensing card imaging, the SNR is increased by 1.29 dB and the contrast noise ratio (CNR) value is increased by 1.44. The time required for the linearization and intensity compensation is 30 ms for a multi thread method using a central processing unit (CPU) compared to 0.8 ms for compute unified device architecture (CUDA) processing using a graphics processing unit (GPU). We verified that our linearization method is appropriate for applying real time imaging of SS-OCT.

외부공진 반도체 레이저 기반의 초고속 파장훑음 광원

  • Kim, Chang-Seok;Lee, Hwi-Don
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.123-123
    • /
    • 2013
  • OCT (Optical Coherence Tomography)는 의료용 생체조직의 단층 영상을 레이저 빛을 이용하여 구현하는 첨단 의료기술이다. Time-domain과 Fourier-domain을 기반으로 다양한 광간섭 신호의 획득이 연구되고 있으며, 영상획득 속도의 향상을 위한 경쟁이 세계적으로 치열한 상황이다. 최근 초고속 파장훑음 광원(Wavelength-swept source)의 개발을 통하여 초당 300 frame 이상의 단층 영상이 구현되고 있다. 본 발표에서는 초고속 파장훑음 레이저 광원(Wavelength swept laser)이 능동형 모드잠금(Active mode locking) 외부공진 반도체 공진 구조를 기반으로 새롭게 구현된 연구 성과를 포함한다. 분산에 의한 모드 잠금에 의하여 발진 파장이 결정되어 가변하므로 1 MHz 급 이상의 초고속 반복이 가능하며, 특히 의료용 산업용 분야의 다양한 광센서 및 광영상 응용에 활발히 응용되고 있다.

  • PDF