• Title/Summary/Keyword: Sweet cherry

Search Result 30, Processing Time 0.034 seconds

Bacterial Canker of Sweet Cherry (Prunus avium L.) Caused by Pseudomonas syringae pv. morsprunorum (Pseudomonas syringae pv. morsprunorum에 의한 양앵두나무 궤양병)

  • Kim, Gyoung-Hee;Nou, Ill-Sup;Hur, Jae-Seoun;Lee, Seung-Don;Koh, Young-Jin
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.80-84
    • /
    • 2005
  • Bacterial canker of sweet cherry (Prunus avium L.) was observed in farmers\' orchards in Goesan, Chungbuk in 2003. Typical canker symptoms occurred on the branches or twigs of sweet cherry in early spring and bacterial exudates oozed out of the cracked barks of diseased trees. Watersoaked brown symptoms appeared on the leaves and severe infection caused thorough defoliation on the branches or twigs of sweet cherry. When severely infected branches or twigs were cut, irregular and rusty-colored symptoms in sapwood and heartwood were clearly found, indicating that they can serve as specific symptoms of bacterial canker of sweet cherry. The causal bacterium responsible for the symptoms was isolated purely from the infected sapwood of sweet cherry. Based on its morphological, physiological and biochemical characteristics, the causal bacterium was identified as Pseudomonas syringae pv. morsprunorum. The bacterium was pathogenic on sweet cherry and Japanese apricot, but not on peach, cherry, and kiwifruit. It is proposed that the disease be named as bacterial canker of sweet cherry.

Occurrence of bacterial canker of sweet cherry caused by Pseudomonas syringae pv. morsprunorum

  • Kim, G. H.;I. S. Nou;Y. J. Koh
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.98.2-99
    • /
    • 2003
  • Bacterial canker of sweet cherry (Prunus cerasus L.) was observed in farmers' orchard in Goesan, Chungbuk in 2003. Typical canker symptom occurred on the branches or twigs of sweet cherry in early spring and bacterial exudates oozed out of the cracked barks of diseased trees. Watersoaked brown symptom appeared on the leaves and severe infection caused thorough defoliation on the branches or twigs of sweet cherry. When cut the severely infected branches or twigs, irregular and rusty-colored symptoms in sapwood and heartwood were clearly found, indicating that they could serve as specific symptoms of bacterial canker of sweet cherry. The gram negative, aerobic bacterium isolated from the lesion produced fluorescent pigments on King's B agar medium but did not grow at 37$^{\circ}C$ The bacterium formed Levan-type colonies, and showed negative reactions in oxidase reaction, arginine dihydrolysis test, and pectolytic activity Based on the biochemical and pathological characteristics, the causal organism was identified as Pseudomonas syringae pv. morsprunorum. This is the first report on bacterial canker of sweet cherry in Korea.

  • PDF

Genetic Diversity in the Coat Protein Genes of Prune dwarf virus Isolates from Sweet Cherry Growing in Turkey

  • Ozturk, Yusuf;Cevik, Bayram
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.41-49
    • /
    • 2015
  • Sweet cherry is an important fruit crop with increasing economical value in Turkey and the world. A number of viruses cause diseases and economical losses in sweet cherry. Prune dwarf virus (PDV), is one of the most common viruses of stone fruits including sweet cherry in the world. In this study, PDV was detected from 316 of 521 sweet cherry samples collected from 142 orchards in 10 districts of Isparta province of Turkey by double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA). The presence of PDV in ELISA positive samples was confirmed in 37 isolates by reverse transcription- polymerase chain reaction (RT-PCR) method. A genomic region of 862 bp containing the coat protein (CP) gene of PDV was re-amplified from 21 selected isolates by RT-PCR. Amplified DNA fragments of these isolates were purified and sequenced for molecular characterization and determining genetic diversity of PDV. Sequence comparisons showed 84-99% to 81-100% sequence identity at nucleotide and amino acid level, respectively, of the CP genes of PDV isolates from Isparta and other parts of the world. Phylogenetic analyses of the CP genes of PDV isolates from different geographical origins and diverse hosts revealed that PDV isolates formed different phylogenetic groups. While isolates were not grouped solely based on their geographical origins or hosts, some association between phylogenetic groups and geographical origins or hosts were observed.

Survey of Cherry necrotic rusty mottle virus and Cherry green ring mottle virus incidence in Korea by Duplex RT-PCR

  • Lee, Seung-Yeol;Yea, Mi-Chi;Back, Chang-Gi;Choi, Kwang-Shik;Kang, In-Kyu;Lee, Su-Heon;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.445-449
    • /
    • 2014
  • The incidence of Cherry necrotic rusty mottle virus (CNRMV) and Cherry green ring mottle virus (CGRMV) have recently been occurred in Korea, posing a problem for sweet cherry cultivation. Since infected trees have symptomless leaves or ring-like spots on the pericarp, it is difficult to identify a viral infection. In this study, the incidence of CNRMV and CGRMV in sweet cherry in Gyeongbuk province was surveyed using a newly developed duplex reverse transcriptase polymerase chain reaction (RT-PCR) method that can detect both viruses in a single reaction. CNRMV and CGRMV co-infection rates were 29.6%, 53.6%, and 17.6%, respectively, in samples collected from three different sites (Daegu, Gyeongju and Gyeongsan) in Gyeongbuk province during 2012 and 2013. This duplex RT-PCR method offers a simple, rapid, and effective way of identifying CNRMV and CGRMV simultaneously in sweet cherry trees, which can aid in the management of viral infections that could undermine yield.

Identification of Cherry green ring mottle virus on Sweet Cherry Trees in Korea (국내 양앵두나무에서 발생한 Cherry green ring mottle virus 동정)

  • Cho, In-Sook;Choi, Gug-Seoun;Choi, Seung-Kook
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.326-330
    • /
    • 2013
  • During the 2012 growing season, 154 leaf samples were collected from sweet cherry trees in Hwaseong, Pyeongtaek, Gyeongju, Kimcheon, Daegu, Yeongju and Eumseong and tested for the presence of Cherry green ring mottle virus (CGRMV). PCR products of the expected size (807 bp) were obtained from 6 samples. The PCR products were cloned and sequenced. The nucleotide sequences of the clones showed over 88% identities to published coat protein sequences of CGRMV isolates in the GenBank database. The sequences of CGRMV isolates, CGR-KO 1-6 shared 98.8 to 99.8% nucleotide and 99.6 to 100% amino acid similarities. Phylogenetic analysis indicated that the Korean CGRMV isolates belong to the group II of CGRMV coat protein genes. The CGRMV infected sweet cherry trees were also tested for Apple chlorotic leaf spot virus (ACLSV), Apple mosaic virus (ApMV), Cherry necrotic rusty mottle virus (CNRMV), Cherry mottle leaf virus (CMLV), Cherry rasp leaf virus (CRLV), Cherry leafroll virus (CLRV), Cherry virus A (CVA), Little cherry virus 1 (LChV1), Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) by RT-PCR. All of the tested trees were also infected with ACLSV.

Utilization of Bombus terrestris as a Sweet Cherry Pollinator in Rain-sheltered Growing (생식용 체리 비가림 재배시 서양뒤영벌(Bombus terrestris L.)의 화분매개 곤충 활용)

  • Kwack, Yong-Bum;Kim, Hong-Lim;Choi, Young Hah;Lee, Jae Han
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.294-298
    • /
    • 2012
  • In sweet cherry (Prunus avium L.) growing there are several severe problem which have to be overcome to produce highly graded fruits because of fruit rots and fruit crackings, if there is frequent precipitation during immature fruit step and picking season. In order to reduce fungicide sprayings and produce qualified fruits in areas with rainy season like as South Korea, rain-sheltered growing is necessary absolutely. Sweet cherry blooms early to medium April in southern area of South Korea. If we depend on honeybees (Apis mellifera) distributed in natural ecosystem, it is not easy to get normal fruit-set every season because of low temperature around blooming time. And also bee keepers seldom sell honeybee hives as a pollinator during spring, instead they keep honeybee hives to get honey. Recently use of B. terrestris as a pollinator of cherry tomato, oriental pumpkin etc. grown in protected cultivation system increase abundantly. Therefore, in this study we studied B. terrestris as an alternate of honeybee to pollinate sweet cherry grown in rain shelter. In part of foraging activity B. terrestris shows staying on a cherry flower for about six second and visiting frequency of 11 flowers per minute. However A. mellifera stayed about 15 second on a flower and visited 4~5 flowers per minute. There were no significant difference in fruit-setting rate and fruit characteristics after using B. terrestris and A. mellifera as pollinators of sweet cherry. Consequently there is no negative effect when we use B. terrestris as an alternate pollinator of A. mellifera in sweet cherry cultivation under rain shelter.

Adventitious Rooting of Cherry Dwarfing Rootstock 'Gisela 5' in Semi-hardwood Cuttings (체리 왜성대목 '기셀라 5' 반경지 삽목 발근 특성)

  • Kim, S.H.;Kim, H.L.;Kang, S.K.;Kwack, Y.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.5-13
    • /
    • 2019
  • The first commercial planting of sweet cherry in Korea is thought to be done in early 1920s. The planting area of sweet cherry in Korea is about 500 ha in 2017. Although sweet cherry is considered a minor fruit in Korea, it is one of premium fruits in market and popular among children and women, especially among pregnant women. The import of sweet cherry fruits has increased dramatically in recent years. Seedlings of Prunus lannesiana or clones of 'Colt' (P. avium × P. pseudocerasus) were usually used as sweet cherry rootstocks in Korea. During recent decades new dwarfing rootstocks for cherry such as 'Gisela' series were developed in Germany. Among them, several 'Gisela' series have been mainly used in international nurseries. In this study, we investigated optimum rooting condition of a dwarfing rootstock 'Gisela 5' in summer season cuttings. Among eight soil conditions tested, saprolite + commercial nursery soil (1:1) and saprolite + vermiculite (1:1) showed higher rooting percentage than others, showing 93.6% and 88.9%, respectively. More than 95% of 'Gisela 5' rootstocks produce roots when it was treated with IBA for several seconds just before cuttings, irrespective of concentrations (500 to 2000 mg·L-1).

Lysophosphatidylethanolamine (LPE) Improves Fruit Size, Color, Quality and Phytochemical Contents of Sweet Cherry c.v. '0900 Ziraat'

  • Ozgen, Mustafa;Serce, Sedat;Akca, Yasar;Hong, Ji Heun
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.196-201
    • /
    • 2015
  • Lysophosphatidylethanolamine (LPE) affects the quality of flowers, fruits, and other horticultural products. Studies have provided evidence that LPE can accelerate ripening of fruits and prolong shelf-life at the same time. In this study, the influence of LPE on anthocyanin accumulation and phytochemical characteristics of sweet cherry was investigated. LPE ($10mg{\cdot}L^{-1}$) was applied to a commercial sweet cherry c.v. '0900 Ziraat' orchard two and four weeks before harvest for two treatment years (2011 and 2012). Preharvest applications of LPE resulted in significant improvement in both pomological and phytochemical attributes at harvest. LPE treatment led to a 17% increase in fruit weight and a 6% increase in soluble solid content when averaged over two experimental years. Fruit phytochemical content and antioxidant capacity were increased significantly. The average total phenolic content of LPE-treated fruits for the two years was $703{\mu}g$ gallic acid equivalent (GAE)/g fresh weight (g FW) compared to $569{\mu}g$ GAE/g FW in the untreated control. Fruits treated with LPE had a 27% and 16% more anthocyanin than the control fruits in 2011 and 2012. Antioxidant capacity of fruits, as measured by TEAC (Trolox equivalent antioxidant capacity) assay, was 12.5 and $11.4{\mu}mol$ TE/g FW in LPE-treated and untreated control fruits, respectively, when averaged over two experimental years. Our results suggest that preharvest application of LPE may have the potential to increase anthocyanin accumulation, improve fruit quality and enhance phytochemical characteristics of sweet cherries.

Monitoring Pollutants Occurred by Non Point Sources - Rainfall Runoff from Cultivated Lands for a Sweet Potato and a Cherry Tree - (비점오염원에서 발생하는 오염물질 모니터링 - 고구마·벚나무경작지의 강우유출수를 대상으로 -)

  • Choi, Byoungwoo;Kang, Meea
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The management of non point sources was marked by the need for clean water environments. It was proposed the fundamentals to promote the reasonable land management in this study. We monitored rainfall events at two non point sources with different crop cultivations such as a sweet potato and a cherry tree for three years. Because the most important factor was rainfall, the rainfall runoff and pollutant loads were generated 100% in the case of rainfall ranges with 50 < rainfall (mm). However the frequency of rainfall runoff was interacted with the crop cultivation and soil characteristics in the case of rainfall ranges such as 30 < rainfall (mm) ${\leq}50^a$ and 10 < rainfall (mm) ${\leq}30^b$. The frequency of rainfall runoff was a : 60% and b : 5% in the cherry tree cultivation with growing significantly and pollutant loads were lower than that of the sweet potato cultivation. Meanwhile the frequency of rainfall runoff was a : 60% and b : 5% in the sweet potato cultivation.

Structual Observation of Fruit Skin and Influence of Rainfall Inducing Fruit Cracking in 'Sato Nishiki' Sweet Cherry (체리 '좌등금'의 과실표면 구조 관찰과 강우가 열과발생에 미치는 영향)

  • Yoon, Ik-Koo;Nam, Eun-Young;Shin, Yong-Uk;Yun, Seok-Kyu;Moon, Byung-Woo;Choi, Cheol;Kang, Hee-Kyoung
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.382-386
    • /
    • 2010
  • Fruit cracking of sweet cherry fruit due to rain near harvest is a major source of crop loss in the cherry industry. The objection of this study was to understand the sweet cherry fruit cracking. Depending on the year, the disorder is characterized by a cracking of the outside layer of the cherry skin, as called cuticle. The crackings were appeared around the stem end, where water could accumulate, but was also seen fruit side or apical end. The cracking was observed mostly in the fruit apical end in 2004 and around the stem end in the other years. It had more rainfall at early season of fruit growth, early May, in 2004 and 2006 compared to other years. Those years showed higher rates of the fruit cracking occurrence. The hypodermal layer was examined on cracking susceptible cultivar, 'Sato Nishiki' from young to mature fruit cuticle. The hypodermal layers of the stem end area were decreased by one to two layers and fruit apical end area was cracked as fruit development. When fruits were immersed in distilled water, the larger fruit (> 6 g) had more cracking ratio than smaller fruits (< 4.5 g).