• Title/Summary/Keyword: Sway Reduction

Search Result 24, Processing Time 0.025 seconds

Development of Caravan Sway Reduction System using the Hitch Angle Control Algorithm (히치 각도 제어 알고리즘을 통한 카라반 스웨이 저감 장치 개발)

  • Kim, Chang-Young;Yoo, Jung-Joo;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.171-178
    • /
    • 2021
  • Caravans are easily affected by external physical factors and often cause dangerous situations for passengers. Therefore, in order to secure the stability of the passenger, there is a need to develop a sway reduction device capable of preventing the sway phenomenon in advance. This paper aims to minimize the hitch angle between the tow vehicle and the caravan. Specifically, the initial instability of the caravan is detected through an IMU sensor mounted on each of the tow vehicle and the caravan, and a control value is calculated to reduce errors from the Hitch angle and Hitch yaw rate using a PID controller. Different braking torques are generated, distributed, and controlled on the left and right brakes of the caravan according to the calculated control value. It could be verified through the driving experiment that the hitch angle was decreased compared to the case where the performance of the sway reduction device was not controlled, and the transverse stability improvement rate was improved by 94.49% compared to before control.

The effect of ankle joint mobilization technique on equilibrium ability in the individuals with supinated foot (회외발에 대한 족관절 관절가동술이 균형능력에 미치는 영향)

  • Gong, Won-Tae;Ma, Sang-Yeol;Kim, Tae-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.527-539
    • /
    • 2009
  • The purpose of this study was to evaluate the influence of ankle joint mobilization on equilibrium ability of supinated foot. Both Joint mobilization group(n=20) and control group(n=20) were measured an equilibrium ability by Balance performance monitor at pre-test, post-test in 2 weeks, post-test in 4 weeks and follow-up test in 2 weeks. The sway area, sway path length and sway maximum velocity of the joint mobilization group were significantly reduced among the experimental period (p<.05). The reduction of sway area, sway path length and sway maximum velocity were significantly different between the joint mobilization group and the control group at in 2 weeks, 4 weeks and follow-up test(p<.05). In conclusion, we were found that ankle joint mobilization could reduce sway area, sway path length and sway max velocity and improve a balance for the individuals with supinated foot.

  • PDF

Feedback Linearization Control of Container Cranes (컨테이너 크레인의 되먹임 선형화제어)

  • PARK HAHN;CHWA DONG-KYUNG;HONG KEUM-SHIK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.58-64
    • /
    • 2005
  • In this paper, a feedback linearizing anti-sway control law, using a 2-D model for container cranes, is investigated. The equations of motion are first derived from Lagrange's equation. Then, by substituting the sway dynamics into the trolley dynamics, a reduction of variables from three (trolley, hoist, sway) to two (trolley, hoist) is pursued. The anti-sway control law is designed based on the Lyapunov stability theorem. The proposed control law guarantees the uniform asymptotic stability of the closed-loop system. The simulation results of the derived control law, using MATLAB/Simulink, are compared with those of the sliding mode control law, noted in previous literature. Also, experimental results using a 3-D pilot crane are provided.

Payload-Swing Suppression of a Container Crane: Comparison Between Command Shaping Control and Optimal Control

  • Do, Huh-Chang;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.54.2-54
    • /
    • 2001
  • In this paper two control strategies, command shaping control and optimal control, which aim to the reduction of the residual vibrations of the payload in a container crane system are investigated. Both control methods are open loop control. Due to unmodeled dynamics of the plant and disturbances like initial sway and wind, some residual sway always exists at the end of trolley movement. Command inputs are designed to achieve the control objectives including minimal residual vibration and robustness in the presence of unmodeled dynamics. Simulation results of various command inputs are compared in terms of arrival time, residual sway angle, robustness, and maximum sway distance during the traveling. Command shaping method provides a more competent tool than optimal control.

  • PDF

The Effect of Human Lower Limb Vibration on Postural Stability during Unstable Posture (불안정한 자세에서 하지에 인가한 진동자극이 자세 안정성 개선에 미치는 영향)

  • Eun, H.I.;Yu, M.;Kim, D.W.;Kwon, T.K.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.628-635
    • /
    • 2007
  • We studied the effect of vibratory stimulations of different leg muscles, tibialis anterior(TA) and triceps surae(TS), and plantar zones in ten healthy subjects during 1) quiet standing, 2) forward lean of body, 3) backward lean of body, 4) right lean of body, and 5) left lean of body. The experiments were performed on the force platform. The effect of vibration were measured by monitoring the area of COP(Center of pressure) sway. The subjects wore a vibratory stimulation system on foot and ankles and were given the instruction not to resist against the applied perturbations. The results show that all vibratory stimulations to lower limb muscles and plantar zones reduced the COP sway area. This reduction of the COP sway area occurred also in partial vibratory stimulations during quiet standing. In forward lean of body, vibratory stimulations to TA reduced the COP sway area. During backward lean of body, vibratory stimulations to TS reduced the COP sway area. When the subject was tilted right, vibratory stimulations to left plantar zone reduced the COP sway area. During left lean of body, vibratory stimulations to right plantar zone reduced the COP sway area. Thus, the influence of vibratory stimulations to leg muscle and plantar zones differed significantly depending on the lean of body. We suggest that the vibration stimuli from leg muscles and plantar zones could be selectively used to help maintaining postural balance stable.

Sway Control of c Container Crane (Part II): Regulation of the Pendulum Sway through Patternizing Trolley Moving Velocity (컨테이너 크레인의 흔들림 제어 (Part II): 트롤리 주행속도 조절을 통한 진자운동의 제어)

  • Hong, Keum-Shik;Sohn, Sung-Chull;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.132-138
    • /
    • 1997
  • Six different types of velocity profiles of trolley movement of a container crane are investigated for the minimal sway angle at the target trolley position. Three velocity patterns which include trapezoidal, stepped and notched-type velocity patterns are obtained assuming constant rope length. The notched type velocity pattern is shown to be derived from the time-optimal bang-bang control. The stepped type velocity pattern can be shown to be derived as bang-off bang control as well. Considering the damping effect due to hoist motion a double stage acceleration pattern is also analyzed. The main objective of the paper is to show how much time-reduction can be obtained among several velocity patterns appearing in the literature.

  • PDF

Effects of Transcutaneous Electrical Nerve Stimulation depending on Frequency and Intensity for Postural Sway during Sit to Stand with Stroke Patients

  • Byun, Dong-Uk;Shin, Won-Seob
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.3
    • /
    • pp.136-142
    • /
    • 2013
  • Purpose: The application of transcutaneous electrical nerve stimulation (TENS) is beneficial for joint movements, inhibition of spasticity, and the improvement of walking ability in patients with chronic hemiplegia. This study aimed to identify the effect of the application of TENS to the knee extensor on the affected side with respect to postural-sway distance and velocity during the sit-to stand movement. Methods: We included 19 patients with post-stroke hemiplegia in this study. They underwent measurements during the sit-to stand movement on a force plate with 5 different stimulation dosages applied over 7 s:No TENS, high-frequency and high intensity TENS, high-frequency and low intensity TENS, low-frequency and high intensity TENS, and low-frequency and low intensity TENS The 5 different condition were administered in random order. Results: The group that received TENS application exhibited a significant decrease in path length and average velocity of center of pressure (COP) displacement compared with the group that did not receive TENS application. TENS dosage at low frequency (3Hz) and high intensity yielded a significant decrease in path length, average velocity, mediolateral distance and anteroposterior distance of COP displacement (p<0.05). Conclusion: Our results demonstrated the effectiveness of the application of low-frequency TENS on STS performance. These findings provide useful information on the application of TENS for the reduction of postural sway during the sit-to-stand movement after stroke.

Development of Small Crane Control System to Improve Fishery Operations (어장작업 개선을 위한 소형 크레인 조작제어장치 개발)

  • Jeong, Heon;Lee, Sang-Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.625-632
    • /
    • 2014
  • It is required a lot of strength in aquaculture, such as dragging up or moving heavy loads. So, a helper system like excavator at construction is need for fishermen. As most of HFMSC(Hydraulic Fishery Managing Small Crane)s are operated based on ON/OFF control, it can make sway the contents in the crane. In worse case, it could threaten workers. In this paper, we development the MICOM based controller which can reduce the swing sway. This paper describes the hydraulic characteristics, the design method of controller and the control algorithms. And, the proposed controller show the efficiency to carry out the experimental validation.

Effect of Unstale Surface Lumbar Stabilization Exercise on Trunk Posture and Balance Ability in Patients With Scoliosis (불안정한 지지면의 척추안정화 운동이 척추측만증 환자의 체간 자세와 균형에 미치는 영향)

  • Lee, Woo-Jin;Lim, Chang-Hun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.1
    • /
    • pp.59-67
    • /
    • 2012
  • Purpose : This study was somatosensory less in patients with idiopathic scoliosis somatosensory input to the lumbar stabilization exercises carried out to determine the most effective treatment method to be stable and unstable in terms of supporting the lumbar stabilization exercises the patient's torso length and postural sway by comparing the distance from a standing position and looked for differences in effect on the balance. Methods : The subjects of the study were 18 patients who showed the symptom of scoliosis. The study classified the patients into two experimental groups, one using an unstable surface and one a fixed surface, and the patients were required to do a lumbar stabilization exercise a total of 12 times for 60 minutes per session, three times a week for four weeks. The study carried out a paired comparison t-test so as to compare differences between measurement values in each experimental group before and after the exercise. Results : Superior iliac spine on the left, there was a significant reduction in the group doing the lumbar stabilization exercise on an unstable surface (p<0.05). Regarding change in sway distance to the left and right directions in the group doing the lumbar stabilization exercise on the unstable surface, there was a significant decrease in both the condition of closed eyes or open eyes (p<0.05). As for change in sway distance in forward-and-backward direction, there was a significant reduction in the condition of either closed eyes or open eyes (p<0.05). Conclusion : The lumbar stabilization exercise on an unstable surface improved the trunk posture of patients with scoliosis symmetrically, and the static balance ability in a standing posture was discovered to be improved. In the future, the lumbar stabilization exercise on an unstable surface may be used as a posture correction and balance increase exercise for patients with scoliosis.

Effects of Vibratory Stimulus on Postural Balance Control during Standing on a Stable and an Unstable Support (안정판과 불안정판에서 자세 균형 조절에 대한 진동자극의 영향)

  • Yu, Mi;Eun, Hey-In;Kim, Dong-Wook;Kwon, Tae-Kyu;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.647-656
    • /
    • 2007
  • The purpose of this study was to analyze the effects of vibratory stimulus as somatosensory inputs on the postural control in human standing. To study these effects, the center of pressure(COP) was observed while subjects were standing on a stable and an unstable support with co-stimulated mechanical vibrations to flexor ankle muscles(tibialis anterior tendon, achilles tendon) and two plantar zones on both foot. The COP sway measurement was repeated twice in four conditions: (1) with visual cue and vibration, (2) without visual cue and vibration, (3) with visual cue and without vibration, (4) without visual cue and with vibration. The calculated parameters were the COP sway area and the distance, the median frequency and the spectral energy of COP sway in three intervals $0.1{\sim}0.3,\;0.3{\sim}1,\;1{\sim}3Hz$. The results showed that vibratory stimulus affect postural stability. The reduction rate of the COP sway with vibratory stimulus were higher on the unstable support because the effect of postural stability increases when afferent nervous flow is more activated by vibration on unstable support. If unclear visual or vibratory information is received, one type of information is compared with the other type of sensory information. Then the input balance between visual and vibratory information is corrected to maintain postural stability. These findings are important for the rehabilitation system of postural balance control and the use of vibratory information.