• Title/Summary/Keyword: Swarm

Search Result 1,072, Processing Time 0.021 seconds

The Algorithm Development of Aging Diagnosis Using Swarm Optimization (군집 최적화를 이용한 열화 진단 알고리즘 개발)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2013
  • In this paper, properties of pattern using LBG (Linde-Buzo-Gray) Algorithm was explored including the exactness of K-means algorithm and process time of EM (Expectation Maximization) algorithm in order to develop analysis algorithm of partial discharge pattern in a cable using acoustic data analysis system. Partial discharge was measured by generating inner fault due to lamination of XLPE which is used for cable insulation material. Discharge pattern was analysed by changing the number of swarm article to 2, 4, and 6 in order to interpret swarm structure and properties.

Structural Design of Optimized Fuzzy Inference System Based on Particle Swarm Optimization (입자군집 최적화에 기초한 최적 퍼지추론 시스템의 구조설계)

  • Kim, Wook-Dong;Lee, Dong-Jin;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.384-386
    • /
    • 2009
  • This paper introduces an effectively optimized Fuzzy model identification by means of complex and nonlinear system applying PSO algorithm. In other words, we use PSO(Particle Swarm Optimization) for identification of Fuzzy model structure and parameter. PSO is an algorithm that follows a collaborative population-based search model. Each particle of swarm flies around in a multidimensional search space looking for the optimal solution. Then, Particles adjust their position according to their own and their neighboring-particles experience. This paper identifies the premise part parameters and the consequence structures that have many effects on Fuzzy system based on PSO. In the premise parts of the rules, we use triangular. Finally we evaluate the Fuzzy model that is widely used in the standard model of gas data and sew data.

  • PDF

Development of Operation Network System and Processor in the Loop Simulation for Swarm Flight of Small UAVs (소형 무인기들의 군집비행을 위한 운영 네트워크 시스템과 PILS 개발)

  • Kim, Sung-Hwan;Cho, Sang-Ook;Cho, Seong-Beom;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.433-438
    • /
    • 2012
  • In this paper, a operation network system equipped with onboard wireless communication systems and ground-based mission control systems is proposed for swarm flight of small UAVs. This operating system can be divided into two networks, UAV communication network and ground control system. The UAV communication network is intend to exchange the informations of navigation, mission and flight status with minimum time delay. The ground control system consisted of mission control systems and UDP network. Proposed operation network system can make a swarm flight of various UAVs, execute complex missions decentralizing mission to several UAVs and cooperte several missions. Finally, PILS environments are developed based on the total operating system.

A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithm (PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구)

  • Kim, Woong-Ki;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2511-2519
    • /
    • 2009
  • In this paper, we introduce the methodological system design via feature selection using Principal Component Analysis and Particle Swarm Optimization algorithms. The overall methodological system design comes from three kinds of modules such as preprocessing module, feature extraction module, and recognition module. First, Histogram equalization enhance the quality of image by exploiting contrast effect based on the normalized function generated from histogram distribution values of 2D face image. Secondly, PCA extracts feature vectors to be used for face recognition by using eigenvalues and eigenvectors obtained from covariance matrix. Finally the feature selection for face recognition among the entire feature vectors is considered by means of the Particle Swarm Optimization. The optimized Polynomial-based Radial Basis Function Neural Networks are used to evaluate the face recognition performance. This study shows that the proposed methodological system design is effective to the analysis of preferred face recognition.

Utilizing Particle Swarm Optimization into Multimodal Function Optimization

  • Pham, Minh-Trien;Baatar, Nyambayar;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.86-89
    • /
    • 2008
  • There are some modified methods such as K-means Clustering Particle Swarm Optimization and Niching Particle Swarm Optimization based on PSO which aim to locate all optima in multimodal functions. K-means Clustering Particle Optimization could locate all optima of functions with finite number of optima. Niching Particle Swarm Optimization is able to locate all of optima but high computing time. Because of those disadvantages, we proposed a new method that could locate all of optima with reasonal time. We applied our method and others as well to analytic functions. By comparing the outcomes, it is shown that our method is significantly more effective than the two others.

  • PDF

Harmonic Elimination in Three-Phase Voltage Source Inverters by Particle Swarm Optimization

  • Azab, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents accurate solutions for nonlinear transcendental equations of the selective harmonic elimination technique used in three-phase PWM inverters feeding the induction motor by particle swarm optimization (PSO). With the proposed approach, the required switching angles are computed efficiently to eliminate low order harmonics up to the $23^{rd}$ from the inverter voltage waveform, whereas the magnitude of the fundamental component is controlled to the desired value. A set of solutions and the evaluation of the proposed method are presented. The obtained results prove that the algorithm converges to a precise solution after several iterations. The salient contribution of the paper is the application of the particle swarm algorithm to attenuate successfully any undesired loworder harmonics from the inverter output voltage. The current paper demonstrates that the PSO is a promising approach to control the operation of a three-phase voltage source inverter with a selective harmonic elimination strategy to be applied in induction motor drives.

Coupling Particles Swarm Optimization for Multimodal Electromagnetic Problems

  • Pham, Minh-Trien;Song, Min-Ho;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.423-430
    • /
    • 2010
  • Particle swarm optimization (PSO) algorithm is designed to find a single global optimal point. However, the PSO needs to be modified in order to find multiple optimal points of a multimodal function. These modifications usually divide a swarm of particles into multiple subswarms; in turn, these subswarms try to find their own optimal point, resulting in multiple optimal points. In this work, we present a new PSO algorithm, called coupling PSO to find multiple optimal points of a multimodal function based on coupling particles. In the coupling PSO, each main particle may generate a new particle to form a couple, after which the couple searches its own optimal point using non-stop-moving PSO algorithm. We tested the suggested algorithm and other ones, such as clustering PSO and niche PSO, over three analytic functions. The coupling PSO algorithm was also applied to solve a significant benchmark problem, the TEAM workshop problem 22.

Advanced Particle Swarm Optimization Technique for Fuzzy Time Series Forecasting (퍼지 시계열 예측을 위한 개선된 Particle Swarm Optimization 기법)

  • Park, Jin-Il;Lee, Dae-Jong;Jeon, Myeong-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.11-12
    • /
    • 2008
  • 퍼지 시계열 예측은 전체 퍼지 구간에 따른 퍼지 소속 함수의 개수와 범위에 따라서 예측성능에 많은 영향을 미치고 있으며, 이러한 문제점을 개선하기 위한 방법으로 다수 객체들의 학습 및 군집 특성을 이용한 Particle Swarm Optimization기법을 도입하였다. 제안된 방법에서는 군집의 최적 객체를 전체 최적해와 각각의 퍼지 소속 함수들에 대한 최적해로 구분하여 탐색하는 기법을 제안한다. 실제 시계열 데이터를 이용한 실험을 통하여 기존의 연구 결과들과 비교함으로써 제안된 방법의 우수한 성능을 가짐을 검증하였다.

  • PDF

Path Control Method of Networked Swarm Robot Systems using Spring Damper Impedance Features (스프링 댐퍼 임피던스 특성을 이용한 네트워크 기반의 군집 로봇의 경로 제어 기법)

  • Kim, Sung-Wook;Kim, Dong-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • This paper proposes networked swarm robotic systems with group based control scheme using spring damper impendence feature. The proposed algorithm is applied to keep system arrangement in unexpected situations based on the spring-damper impedance and fuzzy logic. Using the proposed scheme, each robot overcome collision problems efficiently. The structure of UBSR (UMPC Based Swarm Robot) system consists of user level, cognitive level, and executive level. This structure is designed to easily meet the different configuration requirements for other levels. Simulation results show an availability of the proposed method.

Hybrid PSO and SSO algorithm for truss layout and size optimization considering dynamic constraints

  • Kaveh, A.;Bakhshpoori, T.;Afshari, E.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.453-474
    • /
    • 2015
  • A hybrid approach of Particle Swarm Optimization (PSO) and Swallow Swarm Optimization algorithm (SSO) namely Hybrid Particle Swallow Swarm Optimization algorithm (HPSSO), is presented as a new variant of PSO algorithm for the highly nonlinear dynamic truss shape and size optimization with multiple natural frequency constraints. Experimentally validation of HPSSO on four benchmark trusses results in high performance in comparison to PSO variants and to those of different optimization techniques. The simulation results clearly show a good balance between global and local exploration abilities and consequently results in good optimum solution.