• Title/Summary/Keyword: Swarm

Search Result 1,066, Processing Time 0.024 seconds

Improved Resource Allocation Model for Reducing Interference among Secondary Users in TV White Space for Broadband Services

  • Marco P. Mwaimu;Mike Majham;Ronoh Kennedy;Kisangiri Michael;Ramadhani Sinde
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.55-68
    • /
    • 2023
  • In recent years, the Television White Space (TVWS) has attracted the interest of many researchers due to its propagation characteristics obtainable between 470MHz and 790MHz spectrum bands. The plenty of unused channels in the TV spectrum allows the secondary users (SUs) to use the channels for broadband services especially in rural areas. However, when the number of SUs increases in the TVWS wireless network the aggregate interference also increases. Aggregate interferences are the combined harmful interferences that can include both co-channel and adjacent interferences. The aggregate interference on the side of Primary Users (PUs) has been extensively scrutinized. Therefore, resource allocation (power and spectrum) is crucial when designing the TVWS network to avoid interferences from Secondary Users (SUs) to PUs and among SUs themselves. This paper proposes a model to improve the resource allocation for reducing the aggregate interface among SUs for broadband services in rural areas. The proposed model uses joint power and spectrum hybrid Firefly algorithm (FA), Genetic algorithm (GA), and Particle Swarm Optimization algorithm (PSO) which is considered the Co-channel interference (CCI) and Adjacent Channel Interference (ACI). The algorithm is integrated with the admission control algorithm so that; there is a possibility to remove some of the SUs in the TVWS network whenever the SINR threshold for SUs and PU are not met. We considered the infeasible system whereby all SUs and PU may not be supported simultaneously. Therefore, we proposed a joint spectrum and power allocation with an admission control algorithm whose better complexity and performance than the ones which have been proposed in the existing algorithms in the literature. The performance of the proposed algorithm is compared using the metrics such as sum throughput, PU SINR, algorithm running time and SU SINR less than threshold and the results show that the PSOFAGA with ELGR admission control algorithm has best performance compared to GA, PSO, FA, and FAGAPSO algorithms.

PID-based Consensus and Formation Control of Second-order Multi-agent System with Heterogeneous State Information (이종 상태 정보를 고려한 이차 다개체 시스템의 PID 기반 일치 및 편대 제어)

  • Min-Jae Kang;Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • Consensus, that aims to converge the states of agents to the same states through information exchanges between agents, has been widely studied to control the multi-agent systems. In real systems, the measurement variables of each agent may be different, the loss of information across communication may occur, and the different networks for each state may need to be constructed for safety. Moreover, the input saturation and the disturbances in the system may cause instability. Therefore, this paper studies the PID(Proportional-Integral-Derivative)-based consensus control to achieve the swarm behavior of the multi-agent systems considering the heterogeneous state information, the input saturations, and the disturbances. Specifically, we consider the multiple follower agents and the single leader agent modeled by the second-order systems, and investigate the conditions to achieve the consensus based on the stability of the error system. It is confirmed that the proposed algorithm can achieve the consensus if only the connectivity of the position graph is guaranteed. Moreover, by extending the consensus algorithm, we study the formation control problem for the multi-agent systems. Finally, the validity of the proposed algorithm was verified through the simulations.

Prediction of Dispersal Directions and Ranges of Volcanic Ashes from the Possible Eruption of Mt. Baekdu

  • Lee, Seung-Yeon;Suh, Gil-Yong;Park, Soo-Yeon;Kim, Yeon-Su;Nam, Jong-Hyun;Yu, Seung-Hyun;Park, Ji-Hoon;Kim, Sang-Jik;Kim, Yong-Sun;Park, Sun-Yong;Yun, Ja-Young;Jang, Yu-Jin;Min, Se-Won;Noh, So-Jung;Kim, Sung-Chul;Lee, Kyo-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • To predict the influence of volcano eruption on agriculture in South Korea we evaluated the dispersal ranges of the volcanic ashes toward the South Korea based on the possibilities of volcano eruption in Mt. Baekdu. The possibilities of volcano eruption in Mt. Baekdu have been still being intensified by the signals including magmatic unrest of the volcano and the frequency of volcanic earthquakes swarm, the horizontal displacement and vertical uplift around the Mt. Baekdu, the temperature rises of hot springs, high ratios of $N_2/O_2$ and $_3He/_4He$ in volcanic gases. The dispersal direction and ranges and the predicted amount of volcanic ash can be significantly influenced by Volcanic Explosivity Index (VEI) and the trend of seasonal wind. The prediction of volcanic ash dispersion by the model showed that the ash cloud extended to Ulleung Island and Japan within 9 hours and 24 hours by the northwestern monsoon wind in winter while the ash cloud extended to northern side by the south-east monsoon wind during June and September. However, the ash cloud may extent to Seoul and southwest coast within 9 hours and 15 hours by northern wind in winter, leading to severe ash deposits over the whole area of South Korea, although the thickness of the ash deposits generally decreases exponentially with increasing distance from a volcano. In case of VEI 7, the ash deposits of Daejeon and Gangneung are $1.31{\times}10^4g\;m^{-2}$ and $1.80{\times}10^5g\;m^{-2}$, respectively. In addition, ash particles may compact close together after they fall to the ground, resulting in increase of the bulk density that can alter the soil physical and chemical properties detrimental to agricultural practices and crop growth.

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF

Structural and Compositional Characteristics of Skarn Zinc-Lead Deposits in the Yeonhwa-Ulchin Mining District, Southeastern Taebaegsan Region, Korea Part I: The Yeonhwa I Mine

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.12 no.2
    • /
    • pp.51-73
    • /
    • 1979
  • The zinc-lead deposits at the Yeonhwa I mine were investigated in terms of ore-forming geologic setting, structural style of ore control, geometry of individual orebodies, zoning, paragenesis and chemical composition of skarn minerals, as well as metal grades and ratios of selected orebodies. The Yeonhwa I mine is characterized by a large swarm of chimney type massive orebodies with thin skarn envelopes, boldly developed through a thick sequence of Pungchon Limestone, the overlying Hwajeol Formation, and the underlying Myobong Slate of Cambrian age. Nearly 20 orebodies of similar shape, but of varying size are arranged in a V-shaped pattern with northwest and northeast trends, clearly indicating an outstanding ore control by a conjugate system of fractures with these trends. Important orebodies are the Wolam 1, 2, 3, and 5 orebodies in the west, and the Namsan 1, 2, 3. and 5 orebodies in the east, among others. The Wolam 1 orebody, which was observed from the -360 level through the -240, -120, and 0 levels to the surface outcrops (totaling a vertical height of about 500m), shows a vertical variation in skarn mineralogy, ranging from pyroxene-garnet zone on the lower levels. through pyroxene (without garnet) zone on the intermediate levels, and finally to rhodochrosite vein on the upper levels and surface. Microprobe analyses of pyroxene and garnet on a total of 14 mineral grains revealed that pyroxenes are manganoan salitic in most samples, with downward increase of Fe and Mn, whereas garnets are highly andraditic, containing fractions of subordinate grossular with downward decrease of Fe. This indicates a reverse relationship of Fe-contents between pyroxene and garnet with depth. Ore minerals are major sphalerite, subordinate galena, and minor chalcopyrite. Sulfide gangue minerals include major pyrrhotite, and minor pyrite and marcasite of later age. Two types of variational trends in metal grades and ratios with depth are present on the plots of assay data from the Wolam orebodies: one is a steady upward increase in Pb, Zn, and Pb:Zn ratios, with a terminal decline at the top of orebody: the other is an irregular or sinusoidal change. The former is characteristic of chimney-type orebodies, whereas the latter is of vein· shaped orebodies. The Pb grades show large variations among orebodies and from level to level, whereas the Zn grades are relatively constand or less variable.

  • PDF

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.