• Title/Summary/Keyword: SwBKP

Search Result 55, Processing Time 0.029 seconds

Effect of Recycling on the Papermaking Properties of Wood Pulp Fibers (펄프섬유(纖維)의 제지특성(製紙特性)에 미치는 회수처리(回收處理)의 영향(影響))

  • Kim, Hyoung-Jin;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.21-38
    • /
    • 1993
  • In order to investigate the influence of recycling, a laboratory method simulating the papermaking process was used for assessing the effects of recycling on fiber properties. Sw-BKP, Hw-BKP and BGP were disintegrated and beaten to about 42$^{\circ}$SR-44$^{\circ}$SR by a valley beater. After beating, these pulps were dewatered by centrifuge and dried at 90$^{\circ}C$ for 72hrs. This recycling process(sequence of wetting, defiberating, dewatering and drying) was repeated seven times. Physical, mechanical and optical properties of recycled pulps were evaluated by TAPPI Standards. Morphological changes occurred through recycling process was observed by SEM. Sheet density decreased with recycling. The largest drop in density occurred during the first recycling. The porosity values decreased with recycling. Mechanical properties such as tensile, burst strength and folding endurance, decreased with recycling. However tear strength of Sw-BKP and mixtured pulp increased at the first recycling. Optical properties such as brightness, opacity and light scattering coefficient, increased with recycling. However, brightness of mixtured pulp gradually decreased with recycling. Fibrillated outer layer of the fiber was gradually removed from the surface with recycling. As a result of recycling, crinkles on the fiber surface were found to be more folded.

  • PDF

Effect of Papermaking Additives on Fiber Mechanical Pretreatment (첨가제를 병용한 섬유의 물리적 전처리의 효과)

  • 서영범;이민구;하인호;조욱연
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, fiber mechanical pretreatment before refining was executed with the addition of papermaking addiditives to find synergistic effects on fiber property improvement. Three fiber furnishes (SwBKP, KOCC, and BCTMP), and five different additives (CMC, CPAM, PEO, NaOH, $Na_2O_2$) were used. It was confirmed again that fiber mechanical pretreatment using Hobart mixer was a special way to modify fiber properties, where fiber WRV (water retention value) increases without losing fiber length. For SwBKP, addition of small amount of CMC (0.2% OD basis), and for KOCC, PEO (0.2% OD basis) caused additional significant improvement of the fiber furnish properties, respectively. Other additives did not cause adverse effects on the mechanical pretreatment, or better. For BCTMP, NaOH addition followed by mechanical pretreatment caused more than 20% improvement in tensile and tear strength simultaneously, compared to the control. The yellowing caused by the treatment of NaOH on BCTMP could be minimized by using $Na_2O_2$ without losing the positive effect of NaOH.

Study on the Properties of Kudzu Fibers as a Papermaking Material (칡 섬유의 특성 및 제지용 원료로의 활용방안에 대한 연구)

  • Kim, Chul-Hwan;Lee, Ji-Young;Gwak, Hye-Jeong;Lee, Hui-Jin;Back, Kyung-Kil;Seo, Jung-Min;Park, Hyun-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.53-60
    • /
    • 2010
  • Kudzu vine (Pueraria lobata) is a perennial plant and spreads all around in South Korea. Recently the use of leaves, stems and roots of kudzu vine has been investigated in many fields. However, the research on kudzu fibers has not been performed in korean pulp and paper industry. As the stems and roots of kudzu were estimated to contain cellulosic fibers, the possibility of producing a raw material from kudzu fibers in pulp and paper mills was investigated in this study. The stems and roots of kudzu were collected in woods, and then the chemical composition and ash contents was measured. To acquire kudzu pulp, kraft pulping and bleaching of kudzu roots were carried out sequently. After making kudzu pulp, freeness and fiber length were measured, and handsheets was also prepared with kudzu pulp and the properties of handsheets were determined. Consequently, kudzu fibers have lower holocellulose contents than wood fibers and other non-wood fibers. Average fiber length is shorter than that of Sw-BKP, but shows the same level as that of Hw-BKP. The handsheet made from kudzu pulp shows the bulkier structure than those made from Hw-BKP and Sw-BKP.

Effect of the Modification of PCC with NCC on the Paper Properties (NCC를 이용한 PCC의 개질이 종이 물성에 미치는 영향)

  • Ming, He;Lee, Yong Kyu;Won, Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.136-143
    • /
    • 2015
  • It is well known that the use of PCC as a filler for printing paper making brought about the serious deterioration of strength properties of paper, although PCC could be helpful to reduce the energy consumption. The use of modified PCC with NCC was tried to solve and/or reduce the strength deterioration problem. NCC was prepared from SwBKP by the acid hydrolysis. There was no significant changes in chemical properties and crystalline structure. However the cyrstallinity of NCC was higher than those of SwBKP. The different dosage of NCC was applied to modify the properties of PCC. 0.1% of NCC dosage was enough to improve ash retention and paper properties. The use of modified PCC with NCC as a filler improved ash retention, bulk, opacity and formation without the serious deterioration of strength properties. Thus the use of modified PCC with NCC might be helpful for not only reduction of energy consumption but also increase of filler dosage without the significant sacrifice of strength properties by the optimization of retention system.

Study on the Change in Physical and Functional Properties of Paper by the Addition of Chitosan (키토산 섬유를 첨가한 종이의 물성 및 기능성의 변화에 관한 연구)

  • Park, Seong-Cheol;Kang, Jin-Ha;Lim, Hyun-A
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.37-46
    • /
    • 2010
  • This study was carried out to develop new application field and obtain the basic data of mixed paper with wood pulp and chitosan fiber for producing functional paper. Two types of wood pulp, such as SwBKP and HwBKP, were mixed with chitosan fiber. Physical and optical properties, water vapor absorption, air permeability, antibacterial activity and ash were measured. And the surface morphology of manufactured paper was observed using SEM. The results are as follows. It was revealed that density, breaking length, burst index, tear index, folding endurance and brightness were reduced but water vapor absorption and air permeability were on the rise in the structural view of SwBKP according to increasing the chitosan fiber ratio. Those HwBKP added chitosan fiber were great not only in the strength but also water vapor absorption and air permeability except for brightness. The water vapor absorption was lower and the air permeability was higher in the HwBKP added various chitosan fiber ratios than those with no chitosan fiber. It is estimated that these properties were related with various mixed rate of chitosan fiber. Particularly, air permeability was strongly dependent on the mixed rate of chitosan fiber. The chitosan fiber has superior antibacterial property, comparing with wood fiber. Adding chitosan fiber to the wood pulp was found to have an excellent antibacterial activity, more than 90%. The ashes were determined within 0.5%. Special bonds between chitosan fiber and wood pulp was observed by SEM and it means that the chitosan fiber were combined equally in the interior of wood pulp. In conclusion, mixing wood pulp with chitosan fiber can not only improves the quality of paper but also extend the usage of paper as a functional paper by using inherent property of chitosan. After all, production of functional paper added chitosan fiber is expected for new valuable industry of paper.

Manufacture of Low Density Paper by Cationic Fatty Acid Bulky Promotor Treatment (2) Effect on CTMP Handsheets Properties (양이온성 지방산아민 벌키화제를 이용한 저밀도 종이 제조 (2) -BCTMP 수초지 특성에 미치는 영향-)

  • Nam, Yun-Seok;Choi, Kyoung-Hwa;Cho, Jun-Hyung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.3
    • /
    • pp.18-23
    • /
    • 2015
  • In this study, the effects of cationic fatty acid bulky promotor on the properties of BCTMP (bleached chemithermomechnical pulp) handsheet including bulk and strength were elucidated. As results, it was observed that the bulk of BCTMP handsheet increased with the increases of the concentration of cationic fatty acid bulky agent, while mechanical properties such as tensile strength and burst strength decreased. The opacity of BCTMP handsheet also increased with the increases of the concentration of cationic fatty acid bulky agent, while brightness was almost not changed. The effectiveness of bulky agent with SwBCTMP (softwood) was higher than that with HwBCTMP (hardwood). Compared with previous research on the effect of bulky agent on BKP handsheet, the bulk increase of BCTMP handsheet was greater compared to that of BKP handsheet. However, the reduction of mechanical property in BCTMP handsheet was lower than that of BKP handsheet.

An Alternative Fiber Processing Method

  • Seo, Yung-Bum;Lee, Chun-Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.34-42
    • /
    • 2011
  • A fiber processing method, which might be an alternative for conventional refining process, was introduced. The method consists of repetitive, gentle, mechanical impacts on fibers, followed by fiber uncurling process. This method was very effective for OCC and BCTMP for increasing WRVs (water retention value) while keeping fiber lengths from shortening. For OCC and BCTMP, gentle mechanical impacts on fibers using Hobart mixer increased breaking lengths and tear strengths simultaneously at fast drainage level, and straightening fibers using kady mill increased those strength properties further. For SwBKP and HwBKP, only mechanical impacts using the Hobart mixer were effective on increasing tensile and tear strength at fast drainage, but there were no further increase by kady mill treatment. The strength increases of BCTMP by this alternative fiber processing method were exceptionally high. An extensive engineering development should be followed to actualize this fiber processing mechanism in an energy-effect way.

A Study on the printability of the paper prepared from red algae pulp(RAP) (홍조류 종이의 인쇄적성에 관한 연구)

  • Lim, Soo-Man;Lee, Young-Se;Yoo, Jae-Hyeon;Youn, Jong-Tae
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2007.11a
    • /
    • pp.45-57
    • /
    • 2007
  • Properties of newly developed paper from Red Algae Pulp (RAP) were examined. The paper samples were prepared according tomixing RAP fiber with wood fibers, HwBKP and SwBKP, to form a paper with 60 g/$m^{2}$ in weight. It was prepared in three to four different levels of refining degree and pressure so that it can reveal different bulk level in order to clearly compare the opacity at equivalent bulk for each furnish compositions. printability of RAP fiber revealed superior effect on print through repression and initial ink absorption. Those properties are expected to improve further if printability improvement effect due to smoothness improvement is added.

  • PDF

Impact of Fines Properties on Fiber Furnish Quality (미세분의 성질이 지료특성에 미치는 영향)

  • Cho Wook-Yeon;Seo Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.2 s.110
    • /
    • pp.1-10
    • /
    • 2005
  • Removal of fines from fiber furnish by fractionation improves drainage, but decreases fiber bonding in paper. Fines can be again classified by their size such as the fines that passed 150 and 400 mesh screen, respectively. A hypothesis of different properties between these two kinds of fines was tested. Four different furnishes (SwBKP, HwBKP, KOCC, and BCTMP) were refined in two levels, and all their furnish and handsheet properties were compared in respect of their fines. KOCC fines gave the slowest drainage and least contribution to breaking length while BCTMP fines the fastest drainage and the highest contribution to breaking length. Removal of the fines that passed 400 mesh screen gave high improvement in drainage and large decrease in breaking length. Only KOCC fines removal gave more positive results where there were large improvement in drainage but only small decrease in breaking length.

Application of WCT (Wet Compaction Test) to Mixed Fiber Furnishes (Wet compaction test를 이용한 혼합지료의 적용)

  • Seo Yung B.;Lee Chun Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.8-17
    • /
    • 2005
  • WCT (Wet compaction test) is a new fiber evaluation method developed recently by Seo and its test results can be used as a predictor for pulp quality and its paper property Bleached chemical pulps (SwBKP, HwBKP), recycled pulp (OCC), and mechanical pulp (BCTMP) were used for the furnishes to be tested by WCT We compared the WCT results to conventional fiber evaluation tests such as WRV (Water Retention Value), free ness, and fiber length in this study, and found that WCT always gave better regression coefficients in relation to pulp quality (drainage), and paper properties (density, tensile, tear, and burst strength). WCT may be used on-line in papermachine.