• Title/Summary/Keyword: Sustainable technologies

Search Result 455, Processing Time 0.024 seconds

Conceptual Principles of the Transformation of Industrial Parks into Eco-Industrial Ones in the Conditions of Sustainable Development

  • Shevchuk, Nataliia;Tulchynska, Svitlana;Severyn-Mrachkovska, Liudmyla;Pidlisna, Olena;Kryshtopa, Iryna
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.349-355
    • /
    • 2021
  • The article investigates the conceptual principles of transformation of industrial parks into eco-industrial ones in the conditions of sustainable development. It is substantiated that the concept of sustainable development in the transformation of industrial parks is to grow industry and jobs, modernize production and introduce innovative technologies, resource and energy efficiency, reduce greenhouse gas emissions and waste storage, social protection of local communities and create favorable infrastructure. It is determined that for the transformation of industrial parks, it is necessary to improve regulatory changes, introduce criteria for compliance of industrial parks and the importance of their consideration, ensure park management by the management company and create favorable incentives for industrial entry into industrial symbiosis. It is proved that industrial parks can be an incentive for industrial development and competitiveness of enterprises. The availability of talented human capital, attractive territories, minerals, energy and mineral resources, developed domestic market, agricultural potential, transport networks is becoming an attractive place for investment and development. Industrial parks need investment. Transformation into eco-industrial parks through the implementation of sustainable development goals opens additional opportunities for access to investment funds and contributes to the implementation of growth and prosperity strategies of the country.

Future green seawater desalination technologies (미래 그린 해수담수화 기술)

  • Kim, Jungbin;Hong, Seungkwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.403-410
    • /
    • 2020
  • The difficulty of securing freshwater sources is increasing with global climate change. On the other hand, seawater is less affected by climate change and regarded as a stable water source. For utilizing seawater as freshwater, seawater desalination technologies should be employed to reduce the concentration of salts. However, current desalination technologies might accelerate climate change and create problems for the ecosystem. The desalination technologies consume higher energy than conventional water treatment technologies, increase carbon footprint with high electricity use, and discharge high salinity of concentrate to the ocean. Thus, it is critical to developing green desalination technologies for sustainable desalination in the era of climate change. The energy consumption of desalination can be lowered by minimizing pump irreversibility, reducing feed salinity, and harvesting osmotic energy. Also, the carbon footprint can be reduced by employing renewable energy sources to the desalination system. Furthermore, the volume of concentrate discharge can be minimized by recovering valuable minerals from high-salinity concentrate. The future green seawater desalination can be achieved by the advancement of desalination technologies, the employment of renewable energy, and the utilization of concentrate.

Survey on robotics and automation technologies for civil infrastructure

  • Myung, Hyun;Wang, Yang;Kang, Shih-Chung Jessy;Chen, XiaoQi
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.891-899
    • /
    • 2014
  • Over the past several decades, substantial amounts of sensors and sensing systems have been developed for civil infrastructure systems. This special issue focuses on state-of-the-art robotics and automation technologies, including construction automation, robotics, instrumentation, monitoring, inspection, control, and rehabilitation for civil infrastructure. The issue also covers construction informatics supporting sensing, analysis and design activities needed to operate smart and sustainable civil infrastructure. Examples include robotic systems applied to civil infrastructure and equipped with various sensing technologies, such as optical sensors, laser sensors, wireless sensors, multi-sensor fusion, etc. This special issue is published in an effort to disseminate current advances of various robotics and automation technologies for civil infrastructure and built environment.

Conceptualizing Accessible Tourism with Smart Technologies

  • Lin, Katsy Jiaxin;Ye, Huiyue;Law, Rob
    • Journal of Smart Tourism
    • /
    • v.2 no.2
    • /
    • pp.5-14
    • /
    • 2022
  • In recent years, UNWTO and academics have called for the development of responsible, sustainable, and universally accessible tourism to promote equal human rights and social inclusion. Prior studies have also revealed the potential and value of smart technologies in reducing, if not removing, barriers to people with access requirements during travel and in their everyday lives. However, a guiding framework of how smart technologies assist in building an accessible destination is still absent, thereby hindering the progress of building accessible tourism. This paper aims to fill this knowledge gap. A conceptual model of smart accessible destination (SAD) was proposed drawing from the intersection of accessible tourism and smart tourism. With the guidance of this conceptual model, tourism destinations and stakeholders can recognize and utilize the synergies of accessible and smart tourism to enhance the social inclusion, competitiveness, and sustainability of a destination.

Review : Present Status of Green Chemistry (녹색화학 기술동향)

  • Lee, Jun-Wung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.246-263
    • /
    • 2011
  • Mankind has just begun to recognize that the most crucial factor to achieve the sustainable society in the future is green technology. Most countries support the development of green technology to prevent catastrophes from global warming, mainly in the areas of reducing carbon dioxide from the atmosphere. However, most products we consume in everyday life are produced through chemical processes, and we often oversee the fact that the huge amount of waste and energy during these chemical processes will seriously influence our goal to achieve our future society sustainable. Thus the technologies to minimize the amount of disposed waste and energy consumption during chemical processes may be more important than to reduce the greenhouse gases. In this regard this review introduces the recent status of green chemistry and future prospects in order to help our chemists and engineers establish research projects based on the green chemistry principles.

Distribution-Support Technologies in Commercialisation: The Malaysia Research Universities (RU) Experiences

  • MOHD ROSDI, Siti Asma';RAMDAN, Mohamad Rohieszan;ADAM, Sabrinah;FUZI, Nursyazwani Mohd;ABDUL RAZAK, Azila;JAMALUDIN, Nurul Atasha
    • Journal of Distribution Science
    • /
    • v.20 no.11
    • /
    • pp.11-17
    • /
    • 2022
  • Purpose: This article explores the experiences of Research Universities (RU) on distribution-support technologies in commercialisation with a specific focus in the Malaysian context. Research design, data and methodology: A qualitative research was carried out, in which six RU were interviewed. A structured interview was conducted. To analyse and interpret the data was using an approach adopted in qualitative thematic strategy. The findings were transcribed using Atlas.ti software to analyse related themes through a thematic analysis approach to link theories. Results: The findings provide useful insights into the significant roles of distribution-support technologies on the commercialisation strategy and impacts on the ecosystem of innovation and commercialisation in providing the importance of Distribution-support Technologies to strengthen the role of university-industry-community relation to drive the economy towards a high-income nation. Conclusions: This study will contribute theory through commercialisation literature by adding new knowledge concerning the link between universities and distribution-support technologies in commercialisation. Therefore, the practical contributions are significant for universities; industries; research institutes; government and societies to develop and plan strategically for effective, strategic and sustainable distribution-support technologies in innovation and commercialisation ecosystem.

The 21st Sustainable Environmental Policies for Protecting the Water Quality and Aquatic Ecosystems (수질 및 수생태계 보전을 위한 세기 지속가능한 환경정책 방안)

  • Kim, Lee-Hyung;Lee, So-Young;Min, Kyung-Suk
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.53-66
    • /
    • 2008
  • The construction technologies for development and urbanization diversely effect on the water qualities, hydraulics and aquatic ecosystems in watershed areas. Usually, the landuse changes in watershed areas by human activities are known as the main sources of pollutants to aquatic ecosystems. Therefore, in order to protect the aquatic ecosystems and to improve the water quality, the construction technologies should be improved with environmental technologies. In this paper, several applicable technologies for construction projects and protection of aquatic ecosystem will be summarized, which are the low impact developments (LID), buffer zones, watershed management practices, etc. Also the 21st sustainable environmental policies concerning watershed management will be discussed for watershed managers.

  • PDF

Enhancing Transparency and Trust in Agrifood Supply Chains through Novel Blockchain-based Architecture

  • Sakthivel V;Prakash Periyaswamy;Jae-Woo Lee;Prabu P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1968-1985
    • /
    • 2024
  • At present, the world is witnessing a rapid change in all the fields of human civilization business interests and goals of all the sectors are changing very fast. Global changes are taking place quickly in all fields - manufacturing, service, agriculture, and external sectors. There are plenty of hurdles in the emerging technologies in agriculture in the modern days. While adopting such technologies as transparency and trust issues among stakeholders, there arises a pressurized necessity on food suppliers because it has to create sustainable systems not only addressing demand-supply disparities but also ensuring food authenticity. Recent studies have attempted to explore the potential of technologies like blockchain and practices for smart and sustainable agriculture. Besides, this well-researched work investigates how a scientific cum technological blockchain architecture addresses supply chain challenges in Precision Agriculture to take up challenges related to transparency traceability, and security. A robust registration phase, efficient authentication mechanisms, and optimized data management strategies are the key components of the proposed architecture. Through secured key exchange mechanisms and encryption techniques, client's identities are verified with inevitable complexity. The confluence of IoT and blockchain technologies that set up modern farms amplify control within supply chain networks. The practical manifestation of the researchers' novel blockchain architecture that has been executed on the Hyperledger network, exposes a clear validation using corroboration of concept. Through exhaustive experimental analyses that encompass, transaction confirmation time and scalability metrics, the proposed architecture not only demonstrates efficiency but also underscores its usability to meet the demands of contemporary Precision Agriculture systems. However, the scholarly paper based upon a comprehensive overview resolves a solution as a fruitful and impactful contribution to blockchain applications in agriculture supply chains.

Using ICT for Mongolia's sustainable development in energy industry

  • Tungalag, Azjargal;Kim, Yun Seon
    • Asia Pacific Journal of Business Review
    • /
    • v.2 no.1
    • /
    • pp.21-52
    • /
    • 2017
  • Nowadays every technology is becoming smarter. Consequently, intensive use of ICT in the whole industries and cities enables a sustainable approach to meet enormous productivity, efficiency, transparency and conservation of natural recourses. Likewise, the role of ICT in terms of controlling, monitoring in the energy industry allows integrating potential renewables, bulk energy conservation and reliable optimized operation in the entire system. In this paper outlines challenging issues in renewable energy integration in Mongolia and proposes potential recommendations and conclusions. The author investigated the main technologies used in energy industry mainly smart grid, challenges and policy aspect in Mongolian energy sector by using the primary and secondary approach with case studies and literature based methodologies. Based on the policy aspect and current implementation of smart grid, the paper tries to address the readiness for the main application and future potential ICT driven applications. Furthermore, it concluded that ICT convergence is demanded to overcome the current vulnerabilities and significant momentum to leave behind by using its potential energy recourses and favorable geographical state. Policymakers may find this study useful, as it answers the question of whether ICT investment can ultimately reduce energy consumption and may aid in future planning. Even tough, in order to develop a smart grid and integrating renewables firstly set an appropriate market structure, ICT will key enabler to make energy system more profitable and sustainable. Regarding the result of this study, ICT deployment contribution is a huge demand for future opportunities energy in Mongolia.

A Pilot Project on the Integrated System Design for Developing the Sustainable Housing Model (친환경 공동주택 구현을 위한 저에너지 설비시스템 통합설계 방안 및 파일럿 프로젝트 계획)

  • Cho, Jin-Kyun;Sung, Jae-Ho;Shin, Seon-Joon;Hong, Min-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1049-1054
    • /
    • 2009
  • Sustainable housing design can contribute to dramatically reduced energy usage and can be applied to all new building projects. This paper explores the potential in Korea of applying available energy efficient building technologies. The objective was to determine the degree of energy reduction that can easily be achieved in new building design. The pilot project is providing some prototypes with display units which incorporate principles of sustainable design and performance utilizing the eco-design objectives. This building challenges ingrained preconceptions about system designs for four energy saving levels(40%, 60%, 80% and zero energy) and exposes barriers to low energy buildings posed by new standards and guidelines.

  • PDF