• Title/Summary/Keyword: Sustainable resources

Search Result 1,331, Processing Time 0.025 seconds

Determination of Nitrogen Application Rates with Paddy Soil Types for Production of High Rice Quality (고품질 완전미 생산을 위한 논 토양유형별 질소 시비량)

  • Song, Yo-Sung;Lee, Ki-Sang;Jung, Byeong-Gan;Jun, Hee-Joong;kwag, Kang-Su;Yeon, Byeong-Yeol;Yoon, Young-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.86-94
    • /
    • 2006
  • The primary concern on fertilizer recommendations on paddy soils in Korea is not high rice yield but high rice quality, sustainable rice yield, and less environmental loads these days. Based on soil survey data, the paddy soils in Korea were classified into five large management types ; normal, sandy, immatured, poorly drained, saline soil. In order to establish the optimum level of nitrogen fertilizer to increase the rate of head rice yield, field experiments were conducted at 24 farmhouses throughout the country with nitrogen fertilizer treatment levels of 0, 50, 70, 90, 110, 140, $170kg\;ha^{-1}$ from 2003 to 2004. As the result of the experiment, the optimum rates of nitrogen fertilizer for improving rice quality were $90kg\;ha^{-1}$ in normal, sandy, and poorly drained soils, $100kg\;ha^{-1}$ in immatured soils, and $112kg\;ha^{-1}$ in saline soils where the content of NaCl in soil was below 0.1%. The optimum rates of nitrogen fertilizer were determined in view of head rice percent, protein content, and palatability value of rice.

Rational budgeting approach as a nutrient management tool for mixed crop-swine farms in Korea

  • Reza, Arif;Shim, Soomin;Kim, Seungsoo;Ahn, Sungil;Won, Seunggun;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1520-1532
    • /
    • 2020
  • Objective: Due to rapid economic return, mixed crop-swine farming systems in Korea have become more intensive. Intensive farming practices often cause nutrient surpluses and lead to environmental pollution. Nutrient budgets can be used to evaluate the environmental impact and as a regulatory policy instrument for nutrient management. This study was conducted to select a nutrient budgeting approach applicable to the mixed crop-swine farms in Korea and suggest an effective manure treatment method to reduce on-farm nutrient production. Methods: In this study, we compared current and ideal gross nutrient balance (GNB) approaches of Organisation for Economic Co-operation and Development and soil system budget (SSB) approach with reference to on-farm manure treatment processes. Data obtained from farm census and published literature were used to develop the farm nutrient budgets. Results: The average nitrogen (N) and phosphorus (P) surpluses were approximately 11 times and over 7 times respectively higher in the GNB approaches than the SSB. After solid-liquid separation of manure, during liquid composting a change in aeration method from intermittent to continuous reduced the N and P loading about 50% and 47%, respectively. Although changing in solid composting method from turning only to turning+aeration improved the N removal efficiency by 30.5%, not much improvement in P removal efficiency was observed. Conclusion: Although the GNB approaches depict the impact of nutrients produced in the mixed crop-swine farms on the overall agricultural environment, the SSB approach shows the partitioning among different nutrient loss pathways and storage of nutrients within the soil system; thus, can help design sustainable nutrient management plans for the mixed cropswine farms. The study also suggests that continuous aeration for liquid composting and turning+aeration for solid composting can reduce nutrient loading to the soil.

An Assessment Model on Sustainability of Local City (지방도시의 지속가능성 평가모형)

  • Hong, Young-Rok;Kwon, Sang-Zoon;Myung, Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.4
    • /
    • pp.1-12
    • /
    • 1999
  • This study aims to find basic data for using the quantitative assessment of the sustainability and establishing the systematic index of the planning for local cities to consider the environmentally sound and sustainable development. The research designs to review professional responding to surveys preceded by separate questionnaires and interviews from book reviews, and suggests to make an assessment model of the sustainability for local cities. The research found consequently as follows. Firstly, the research survey items were decides totally 52, grouped 9 assessmental issues and distributed under 4 assessmental domains for the sustainability from the references of book reviews. Secondly, the research result concentrated on the followings from the professional responding to surveys. 1. A most influent factor is the distribution of animals and plants in a nature domain. The next influent factors are the ratio of mass-transportation systems, the numbers of the species of animals and plants, the acreage of conservative forestry, the numbers of reused water resources, and the usage number of water supply, orderly in the nature domain. 2. A most influent factor is the usage number of synthetic detergents in a pollution domain. The next influent factors are the volume of waste water, the number of registered vehicles, the degree of soil pollution, and the charge of development imposition, orderly in the pollution domain. 3. A most influent factor is the acreage of athletic facilities, in an urban domain. the next influent factors are the acreage of recreational facilities, the number and acreage of cultural assets, the number of cultural facilities, the acreage of landscape conservation area, the charge of cultural asset management, orderly in the urban domain. 4. A most influent factor is the number of waste disposal facilities in a participation domain. The next influent factors are the capacity of reused waste, the usage of synthetic detergents, the ratio of waste water disposal, orderly in the participation domain. 5. A most contributed influent domain to the assessment of the sustainability for local cities is the urban domain. The next influent domains are nature domain, participation domain, and pollution domain, orderly in the contribution of the assessment of the sustainability. But, the pollution domain is little relationship with the sustainability. Therefore, it is clear that the abundant greens and the improved level of culture are dominant influences on the sustainabiligy, as like improving the ratio of roadside trees, the acreage of parks, and enlarging the number of cultural facilities.

  • PDF

Current Status and Perspective of Biological Assessments of Water Environment in Korea (우리나라 생물학적 물환경평가의 현황과 미래)

  • Hwang, Soon-Jin;Kim, Nan-Young;Won, Doo Hee;An, Kwang Kuk;Lee, Jae Kwan;Kim, Chang Soo;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.757-767
    • /
    • 2006
  • Biological assessments are the primary tool for evaluating the biological condition of a water body and makes it possible to understand accumulative and long-term effect of stressors. They also provide reliable biological information for which disturbed systems are to be restored. Sustainable water environment is not enough with attaining only the clean water, but it should sustain healthy and diverse aquatic life. Aquatic organisms are affected by various factors, including not only water quality but also habitat condition and stressors, and thus good condition of both physical and chemical water quality is prerequisite for sustaining healthy organisms. Therefore, biological assessment, along with other physical and chemical assessments, are crucial for evaluating the health of a water body. Overall, sustainability of water environment demands the attainment and maintenance of ecological integrity, which is resulted from the combination of physical, chemical and biological integrity. The biological criteria will play very important role in the water resource management and policy issues, and thus bioassessment program should be fully implemented and supported eventually by the law. To keep ecosystem health of water environment safely from the toxic pollutants and other stressors, the following suggestions need to be considered in environmental quality standards in Korea. For the first step, the biological indicators need to be introduced in evaluating river quality condition; they provide a qualitative description of biological condition of water body. Secondly, the biological water quality standards using biotic indices should be developed and implemented under the consideration of characteristics of Korean river systems. Lastly, the ecological status classification regime (ESCR) should be developed and introduced; it could be used in quality assessment of the water environment in general. In developing ESCR, integration of physico-chemical, biological, and habitat parameters should be taken into account.

Effects of Ozonized Soybean Oil to Changes of Chemical Structures and Bond Strength of pMD (오존산화 처리한 콩기름을 이용한 변성 pMDI 접착제의 화학 구조 및 접착력 변화)

  • You, Young Sam;Lee, Hyun Jong;Lee, Taek Jun;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.37-43
    • /
    • 2008
  • The research attempted to develop an eco-friendly wood adhesive based on vegetable oil (soybean oil), the renewable and sustainable natural resources, using ozonification technology for the chemical structure modification. The soybean oils (SBO) were reacted with $O_3$ at the rate of 7.13 g/h for different times, 15 minutes, 30 minutes, 60 minutes, and 120 minutes. Modified chemical structure of the ozonized SBOs were examined by Fourier transform Infrared (FT-IR) spectrum. The FT-IR spectrum of SBO had an absorbance peak at $3010cm^{-1}$ that is the characteristic peak of the unsaturated double bonds. As ozone treatment time increased, the peak of the double bond was disappeared and aldehyde or carboxyl peak appeared at $1700cm^{-1}$. The dry, wet, and cyclic boiling bond strengths of the ozonized SBO mixed with polymeric diphenylmethane-4, 4-diisocyanate (pMDI) were also investigated. In the dry shear test, all strengths met constantly the standard requirement of $7.0kgf/cm^2$ (KS F3101 2006). The bond strengths gradually increased with increasing ozone treatment time. The highest strength showed at 60 minutes ozone treatment and decreased values at 120 minutes. In the cyclic boiling shear test, 30, 60 and 120 minutes exceeded the standard requirement.

Studies on Chemical Strutures and Adhesion Performance of pMDI Adhesives Modified by Ozonized Soybean Oil with Different Mixing Ratios (오존산화 콩기름의 구조분석 및 이를 이용한 변성 pMDI 접착제의 중량비에 따른 접착력 변화)

  • You, Young Sam;Lee, Hyun Jong;Lee, Taek Jun;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.56-64
    • /
    • 2009
  • The purpose of this study was to investigate and develop an eco-friendly wood adhesive based on vegetable oil (especially soybean oil), the renewable and sustainable natural resources, using ozonification technology for the chemical structure modification. The soybean oil (SBO) was reacted with $O_3$ at the rate of 7.13 g/h for different times, 15 minutes, 30 minutes, 60 minutes, and 120 minutes. The investigation of the modified chemical structure of the ozonized SBOs were conducted using FT-IR, $^1H$-NMR, MALDI-TOF MS, and GC/MS. As ozonification time increased, the peak of the unsaturated double bonds was disappeared and aldehyde or carboxyl peak appeared because ozonification broke the oil into small molecules. The plywoods were made at $110^{\circ}C$ with 30 seconds/mm hot-press time using the different ozonized SBO/pMDI adhesives and were tested for the dry, wet, cyclic boil test according to the Korea Industrial Standard F3101 Ordinary plywood. The bond strengths gradually increased with increasing ozonification time. The weight ratio 1:1 (ozonized SBO/pMDI), all strengths in 15, 30 and 60 minuets, exceeded constantly the dry, wet, cyclic boiling standard requirement. The range of ozonification time and weight ratio can fulfil1 the requirment of the wet test standard were 30~60 minutes and more than 0.5 pMDI. From the comprehensive view on the results of above experiments, it could be confirmed through experiments that ozonized SBO/pMDI has characteristics of effective reactivity and wet stability showed as an excellent candidate of wood adhesive applications.

Estimation of Optimal Stocking Rate of Earthworm Populations (지렁이 개체군의 최적 사육밀도 추정)

  • Lee, Ju-Sam;Noh, Jin-Hwan;Park, Sang-Soo;Lee, Hee-Choong
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.369-383
    • /
    • 2012
  • This experiment was carried out to investigate the optimal stocking rate of earthworm populations grown under different stocking rates. The stocking rate in terms of ratio of biomass of earthworms to biomass of feeds(organic resources) is an important factors for biomass productivity of earthworms and vermicast production. The different stocking rates were 1:16(S-1), 1:32(S-2), 1:48(S-3) and 1:64(S-4), as the ratios of biomass of earthworm to biomass of organic dairy cow manure, respectively. The stocking rate of 1:32(S-2) and 1:46(S-3) were obtained a higher values on increasing rates and conversion efficiency of organic matter to earthworm biomass than other stocking rates. Thus, a stocking rates of 1:32 and 1:46 estimated an optimal stocking rates for maximum biomass productivity of earthworms. A stocking rate of 1:16(S-1) showed a significantly highest values of vermicast production and ratios of vermicasts during the rearing periods.($$P{\leq_-}0.05$$) A stocking rate of 1:48(S-3) showed a highest values of the number of cocoons and vermicasts production per earthworm biomass among the treatment ($$P{\leq_-}0.05$$) The contents of nitrogen, available phosphorus, cation exchange capacity and exchangeable cations of vermicasts tended to increase with stocking rate and rearing progressed. Vermicasts have a great deal of potential for crop production and protection in sustainable organic cropping systems.

Simulation of Various Baffle Types in a Constructed Wetland Sedimentation Tank using CFD (CFD를 이용한 Hybrid 인공습지의 초기침강지 저류판 구조 모의)

  • Noh, Taegyun;Jeon, Jechan;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.324-329
    • /
    • 2016
  • Constructed wetlands are widely applied in urban and rural areas for various purposes such as pollutants reduction, acquisition of eco-spaces and habitats, flooding reduction, acquisition of water resources and environmental education. Since the design of constructed wetlands utilizes ecosystems, special consideration must be given to ecological mechanisms, environmental mechanisms and hydrological mechanisms. To ensure the sustainable functionality of constructed wetlands, it is necessary to achieve stable flow rate and velocity, and remove sediments to ensure sufficient space for detention. To enhance the efficiency of constructed wetland sedimentation basins, this study determined the optimal position for baffle installation, and applied Computational Fluid Dynamics (CFD) to the cross-sectional design of wetlands. CFD analysis revealed that the decrease in flow velocity with baffle installation enhanced the efficiency of sedimentation of particulate matters. Vertical baffles had higher sedimentation efficiency than those with an inclined angle. When vertical baffles were installed in the sedimentation basin of a hybrid constructed wetland to reduce non-point source pollutants in urban areas, the average flow velocity within the basin decreased by 10~30%, while the sedimentation efficiency improved by 1.3~1.5 times. The application of CFD to constructed wetlands is expected to improve the cost efficiency of designing hybrid constructed wetlands with high removal efficiency.

Developing Surface Water Quality Modeling Framework Considering Spatial Resolution of Pollutant Load Estimation for Saemangeum Using HSPF (오염원 산정단위 수준의 소유역 세분화를 고려한 새만금유역 수문·수질모델링 적용성 검토)

  • Seong, Chounghyun;Hwang, Syewoon;Oh, Chansung;Cho, Jaepil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.83-96
    • /
    • 2017
  • This study presented a surface water quality modeling framework considering the spatial resolution of pollutant load estimation to better represent stream water quality characteristics in the Saemangeum watershed which has been focused on keeping its water resources sustainable after the Saemangeum embankment construction. The watershed delineated into 804 sub-watersheds in total based on the administrative districts, which were units for pollutant load estimation and counted as 739 in the watershed, Digital Elevation Model (DEM), and agricultural structures such as drainage canal. The established model consists of 7 Mangyung (MG) sub-models, 7 Dongjin (DJ) sub-models, and 3 Reclaimed sub-models, and the sub-models were simulated in a sequence of upstream to downstream based on its connectivity. The hydrologic calibration and validation of the model were conducted from 14 flow stations for the period of 2009 and 2013 using an automatic calibration scheme. The model performance to the hydrologic stations for calibration and validation showed that the Nash-Sutcliffe coefficient (NSE) ranged from 0.66 to 0.97, PBIAS were -31.0~16.5 %, and $R^2$ were from 0.75 to 0.98, respectively in a monthly time step and therefore, the model showed its hydrological applicability to the watershed. The water quality calibration and validation were conducted based on the 29 stations with the water quality constituents of DO, BOD, TN, and TP during the same period with the flow. The water quality model were manually calibrated, and generally showed an applicability by resulting reasonable variability and seasonality, although some exceptional simulation results were identified in some upstream stations under low-flow conditions. The spatial subdivision in the model framework were compared with previous studies to assess the consideration of administrative boundaries for watershed delineation, and this study outperformed in flow, but showed a similar level of model performance in water quality. The framework presented here can be applicable in a regional scale watershed as well as in a need of fine-resolution simulation.

Soil Resource Inventory and Mapping using Geospatial Technique

  • Jayakumar, S.;Ramachandran, A.;Lee, Jung-Bin;Heo, Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.3-12
    • /
    • 2009
  • Soil is one of the Earth's most important resources. There are many differences among the soils of plains.like and hilly terrains, and therefore, accurate and comprehensive information on soil is essential for optimum and sustainable soil utilization. However, information on the soil of the hilly terrains of the Eastern Ghats of Tamil Nadu, India, is limited or absent. In the present study, Kolli hill, one among the hills of the Eastern Ghats, was soil.inventoried and mapped using a ground survey and remote sensing. Soil samples were collected and their physico.chemical properties analyzed according to the United States Department of Agriculture (USDA) standards. The soils were classified up to the family level. As a result of this study, 30 soil series belonging to ten sub.groups of five great groups and three sub.orders and orders each, were identified (classified to the family level) and mapped. Entisols, Inseptisols and Alfisols were the three orders, among which Entisols was the major one, occupying 75% of the area. Among the five great groups, Ustorthents occupied majority of the area (73%). Lithic Ustorthents and Typic Ustorthents were the two major sub.groups, occupying 40% and 26% of the total area, respectively. The present soil resource mapping of the Eastern Ghats of Tamil Nadu is a pioneer study, which yielded valuable information on the soil in this region.

  • PDF