• Title/Summary/Keyword: Sustainable Energy

Search Result 1,221, Processing Time 0.037 seconds

A Study for Integrated Ocean Energy Utilization System (해양에너지의 복합이용시스템에 관한 기초연구)

  • 김현주;홍석원
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.83-86
    • /
    • 2001
  • This paper aims to make a feasibility study and to propose a master plan for the development of "integrated ocean energy utilization system", which utilizes various renewable ocean energies. Fossils energy, as the most important energy resources which are inevitable for the living and industrial development, becomes exhausted and its consumption creates serious environmental problem. It is important to utilize renewable ocean energy for a sustainable and environmentally friendly development. We survey the integrated utilization of ocean energy based on surveyed energy density distribution and propose concepts of integrated ocean energy utilization plant for both onshore and offshore system. The results of this study can support national effort for renewable energy development utilizing integrated ocean energy and refer as a guideline for the technical development of sustainable integrated ocean energy.

  • PDF

CELL MORPHOLOGY CHANGE BY THE ULTRAVIOLET RAY IRRADIATION

  • Park, Myoung-Joo;Matuo, Yoichirou;Akiyama, Yoko;Izumi, Yoshinobu;Nishijima, Shigehiro
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.15-24
    • /
    • 2009
  • The effect of low doses of ultraviolet (UV) irradiation on morphology changes of cell has been studied based on the observation of the cell length. It was shown that UV-irradiated cell has different behavior in comparison with non-irradiated cell. From the histogram of cell-length distribution, it was confirmed that cell cycle of non irradiated cell was 28 hours, and that cell cycle of irradiated cell with dose of $20\;Jm^{-2}$ was delayed (39 hours), while irradiated cell with $40\;Jm^{-2}$ and $60\;Jm^{-2}$ did not divide and kept growing continuously. It was supposed that in case of $20\;Jm^{-2}$ of irradiation dose, the cell cycle was delayed because the checkpoint worked in order to repair DNA damage induced by generation of pyrimidine dimer, reactive oxygen species and so on. It was also supposed that in case of $40\;Jm^{-2}$ and $60\;Jm^{-2}$ of irradiation dose, overgrowth was induced because the checkpoint was not worked well. The morphology of overgrown cell was similar to that of normally senescent cell. Therefore, it was considered that cell senescence was accelerated by UV irradiation with irradiation doses of $40\;Jm^{-2}$ and $60\;Jm^{-2}$.

Application and Analysis of Rhizopus oryzae Mycelia Extending Characteristic in Solid-state Fermentation for Producing Glucoamylase

  • Tang, Xianghua;Luo, Tianbao;Li, Xue;Yang, Huanhuan;Yang, Yunjuan;Li, Junjun;Xu, Bo;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1865-1875
    • /
    • 2018
  • Enhanced application of solid-state fermentation (SSF) in industrial production and the influence of SSF of Rhizopus K1 on glucoamylase productivity were analyzed using the flat band method. A growth model was implemented through SSF of Rhizopus K1 in this experiment, and spectrophotometric method was used to determine glucoamylase activity. Results showed that in bran and potato culture medium with 70% moisture in a loose state, ${\mu}$ of mycelium reached to $0.15h^{-1}$ after 45 h of culture in a thermostatic water bath incubator at $30^{\circ}C$. Under a low-magnification microscope, mycelial cells appeared uniform, bulky with numerous branches, and were not easily ruptured. The generated glucoamylase activity reached to 55 U/g (dry basis). This study has good utilization value for glucoamylase production by Rhizopus in SSF.

The exfoliation of irradiated nuclear graphite by treatment with organic solvent: A proposal for its recycling

  • Capone, Mauro;Cherubini, Nadia;Cozzella, Maria Letizia;Dodaro, Alessandro;Guarcini, Tiziana
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1037-1040
    • /
    • 2019
  • For the past 50 years, graphite has been widely used as a moderator, reflector and fuel matrix in different kinds of gas-cooled reactors. Resulting in approximately 250,000 metric tons of irradiated graphite waste. One of the most significant long-lived radioisotope from graphite reactors is carbon-14 ($^{14}C$) with a half-life of 5730 years, this makes it a huge concern for deep geologic disposal of nuclear graphite (NG). Considering the lifecycle of NG a number of waste management options have been developed, mainly focused on the achievement the radiological requirements for disposal. The existing approaches for recycling depend on the cost to be economically viable. In this new study, an affordable process to remove $^{14}C$ has been proposed using samples taken from the Nuclear Power Plant in Latina (Italy) which have been used to investigate the capability of organic and inorganic solvents in removing $^{14}C$ from exfoliated nuclear graphite, with the aim to design a practicable approach to obtain graphite for recycling or/and safety disposed as L& LLW.

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

Ocean energy in Indian coasts and islands for sustainability-A roadmap for future

  • Dauji, Saha
    • Advances in Energy Research
    • /
    • v.5 no.4
    • /
    • pp.305-320
    • /
    • 2017
  • Limited quantity and non-uniform distribution of fossil fuel over the world, along with the environmental concerns of increasing $CO_2$ emissions, indicate that gradual and planned switchover to the sustainable energy sources is the need of the day. Ocean energy is well-distributed over the coasts, abundant, renewable and available in the form of wave energy, tidal energy and thermal energy. India has gathered precious experience from the pilot plants utilizing these methods over the last few years. One of the main constraints is deemed to be the grid connectivity. Time has come to transform this limitation into opportunity. Ocean power can be a very suitable option for the coastal belts and the islands. Implementation of this concept would require large-scale industry participation along with favourable government policies in the coming years. This article attempts a review of the ocean energy initiatives in India and proposes a roadmap for the future.

A study on the lighting control system as a demand resources (수요자원으로써의 조명제어시스템 연구)

  • Kim, Jeong-Uk
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.115-121
    • /
    • 2015
  • This paper presents the introduction plan of the renewable energy in innovation city. The introduction plan to make the condition of innovation city best should consider the economical efficiency, the quality of life and the sustainable development. The design of balanced city is demanded to build environment friendly and sustainable city. Energy efficient buildings should be designed to deal with the energy efficiency and environment problem. Therefore, in this paper, we analyze the energy efficiency and provide the method to introduce the renewable energy system, in various buildings. As a result, the renewable energy plans of each innovation city are suggested and analyzed.

Sustainable Design Method of Reinforced Concrete Beam Using Embodied Energy Optimization Technique (내재에너지 최적화를 통한 철근 콘크리트 보의 지속가능 설계법)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Yeo, DongHun;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1053-1063
    • /
    • 2014
  • This study presents a sustainable design method that optimizes the embodied energy of concrete beam based on the concept of sustainable development that effectively utilizes natural resource and energy within the range that our succeeding generation can afford to utilize. In order to get the flexural strength carrying the ultimate load, concrete beam sections are designed by optimization that consists of the embodied energy as a objective function and the requirements of design code as constrained conditions. The sustainable design can be used to minimize the embodied energy consumed in material production, construction, operation, demolition of the infrastructure. As a result of comparison of the cost and the embodied energy optimizations based on practical beam sections, it is shown that 20% embodied energy saving and 35% $CO_2$ emission saving are achieved by sacrificing 10% cost increase. The sustainable design method provides a new effective methodology that manages the strength design concept based on cost minimization together with economic feasibility and sustainability. In addition, the method is expected to be applied to more various structural design practices.

Optimization Analysis for Embodied Energy and CO2 Emission in Reinforced Concrete Column Using Sustainable Design Method (지속가능 설계법을 이용한 철근 콘크리트 기둥의 내재에너지 및 이산화탄소 배출 최적화 해석)

  • Kim, Kyeong-Hwan;Yeo, DongHun;Lee, Sang-Ho;Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.265-274
    • /
    • 2017
  • This study presents a sustainable design method to optimize the embodied energy and $CO_2$ emission complying with the design code for reinforced concrete column. The sustainable design method effectively achieves the minimization of the environmental load and energy consumption whereas the conventional design method has been mostly focused on the cost saving. Failure of reinforced concrete column exhibits compressive or tensile failure mode against an external force such as flexure and compression; thus, optimization analyses are conducted for both failure modes. For the given sections and reinforcement ratios, the optimized sections are determined by optimizing cost, embodied energy, and $CO_2$ emission and various aspects of the sections are thoroughly investigated. The optimization analysis results show that 25% embodied energy and 55% $CO_2$ emission can be approximately reduced by 10% increase in cost. In particular, the embodied energy and $CO_2$ emission were more effectively reduced in the tensile failure mode rather than in the compressive failure mode. Consequently, it was proved that the sustainable design method effectively implements the concept of sustainable development in the design of reinforced concrete structure by optimizing embodied energy consumption and $CO_2$ emission.

UK Case Study for Sustainable Forest Biomass Policy Development of South Korea (지속가능한 산림바이오매스 정책개발을 위한 영국사례 연구)

  • Lee, Seung-Rok;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.50-60
    • /
    • 2021
  • This study investigated the reference case in the UK where legality and sustainability were systematically established for forest biomass represented by wood pellets. The UK is the country that best utilizes the trade value of wood pellets based on sustainability, with bioenergy accounting for 31% of total renewable energy production. The UK imported wood pellet, estimated 8,697 thousand tons in 2019. The UK government has continuously improved the renewable generation policy system to ensure the sustainability of wood pellets. The weighted average greenhouse gas emissions of a UK biomass power plant that received a Renewable Obligation Certificate (ROC) in 2018-19 was 26.71 gCO2e/MJ. These power plants are expected to meet the upper limit of 72.2 gCO2e/MJ by 2025. To issue an ROC, the biomass power plant must demonstrate that 70% of its total biofuel usage is sustainable. The UK uses the Sustainable Biomass Program (SBP) certification system, which is gradually expanding to other European countries, to prove the sustainability of biomass energy fuels. Global wood pellet production with SBP certification in 2019 was 10.5 Mt. This trend has significant implications for introducing additional sustainability into the wood pellet policy of South Korea.