• Title/Summary/Keyword: Suspension systems

Search Result 529, Processing Time 0.027 seconds

Development of Flash Volume Prediction Model for Independent Suspension Parts for Large Commercial Vehicles (대형 상용차용 독립 현가부품 플래쉬 부피 예측 모델 개발)

  • J. W. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.352-359
    • /
    • 2023
  • Recently, independent suspension systems have been applied not only to passenger cars but also to large commercial vehicles. Therefore, the need for research to domestically produce such independent suspensions for large commercial vehicles is gradually increasing. In this paper, we conducted research on the manufacturing technology of the relay lever, which are integral components of independent suspension systems for large commercial vehicles. Our goal was to reduce the flash volume generated during the forging process. The shape variables of the initial billet were adjusted to find proper forming conditions that could minimize flash volume while performing product forming smoothly. Shape variables were set as input variables and the flash volume was set as an output variable, and simulations were carried out to analytically predict the volume of the flash area for each variable condition. Based on the data obtained through numerical simulations, a regression model and an artificial neural network model were used to develop a prediction model that can easily predict the flash volume for variable conditions. For the corresponding prediction model, a goodness of-fit test was performed to confirm a high level of fit. By comparing and analyzing the two prediction models, the high level of fit of the ANN model was confirmed.

A Study on Autonomous Driving Mobile Robot by using Intelligent Algorithm

  • Seo, Hyun-Jae;Kim, Hyo-Jae;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.543-547
    • /
    • 2005
  • In this paper, we designed a intelligent autonomous driving robot by using Fuzzy algorithm. The object of designed robot is recognition of obstacle, avoidance of obstacle and safe arrival. We append a suspension system to auxiliary wheel for improvement in stability and movement. The designed robot can arrive at destination where is wanted to go by the old and the weak and the handicapped at indoor hospital and building.

  • PDF

Control Algorithms of Active Suspension Systems for Ride Comfort Improvement (승차감 향상을 위한 액티브서스펜션의 제어알고리즘)

  • Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.12
    • /
    • pp.61-67
    • /
    • 1992
  • Two control algorithms of active suspension system for improving ride quality are described and their effectiveness is assessed using a quarter car model. Optimal control approach demonstrates great flexibility to meet various running conditions of a vehicle. However, in order to fully utilize the power of optimal control apporach, accurate estimation of the state variables is essential. Simple, yet effective sky-hook algorithm seems to be well suited for real application because of its much relaxed requirements on sensing the stste variables and relative easiness to implment.

  • PDF

Elastokinematic Analysis for Calculating Suspension Design Parameters (현가계 설계인자 계산을 위한 탄성기구학 해석)

  • 강주석;윤중락;배상우;이장무;탁태오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.887-890
    • /
    • 1996
  • In this study, based on the assumption that the displacements of suspension systems under the external forces are very small, a linear form of elastokinametic equations in terms of infinitesimal displacements and joint reaction forces are derived. The equations can be applied to any form of suspensions once the type of kinematic joints and bushings are identified. The validity of the method is proved through the comparison of the results from the more complex solution offered by ADAMS

  • PDF

Modeling & Dynamic Analysis for Four Wheel Steering Vehicles (4WS 차량의 모델링 및 동적 해석)

  • Jang, J.H.;Jeong, W.S.;Han, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

Optimal controller design for active suspension system with asymmetric hydraulic cylinder using feedback linearization (비대칭형 유압실린더를 사용한 능동현가 시스템에서의 Feedback Linearization을 이용한 최적 제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-Woo;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.644-647
    • /
    • 1997
  • Asymmetric cylinders are usually used as an actuator of active suspensions. The conventional optimal controller design does not include actuator dynamics as a state and force controller is needed to track the desired force. But the actuator is not ideal, so performance of an active suspension system is degraded. In this paper, we take account nonlinear actuator dynamics and obtain a linear model using a feedback linearization technique then apply optimal control method. Effectiveness of proposed method is demonstrated by numerical simulation of 1/4 car model.

  • PDF

Monitoring of Atmospheric Corrosivity inside Steel Upper Box Girder in Yeongjong Grand Bridge

  • Li, SeonYeob
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.87-94
    • /
    • 2011
  • The typical corrosion prevention method inside the steel upper box girder in a suspension bridge involves the use of paints. However, in an effort to reduce environmental impact and cost, the suspension portion of the Yeongjong Bridge, Korea utilizes dehumidification systems to control humidity and prevent corrosion inside its box girder. Maintaining a uniform humidity distribution at the proper level inside the box girder is critical to the successful corrosion control. In this study, the humidity and the resultant atmospheric corrosivity inside the box girder of the Yeongjong Bridge was monitored. The corrosion rate of the steel inside the box girder was obtained using thin-film electrical resistance (TFER) corrosion sensors. Time-of-wetness (TOW) measurements and the deposition rates of atmospheric pollutants such as $Cl^{-}$ and $SO_{x}$ were also obtained. Classification of the atmospheric corrosivity inside the box girder was evaluated according to ISO 9223. As a result, no corrosion was found in the upper box girder, indicating that the dehumidification system used in the Yeongjong Bridge is an effective corrosion control method.

Effect of surfactant adsorption on the rheology of suspensions flocculated by associating polymers

  • Otsubo, Yasufumi;Horigome, Misao
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.4
    • /
    • pp.179-185
    • /
    • 2003
  • Associating polymers act as flocculants in colloidal suspensions, because the hydrophobic groups (hydrophobes) can adsorb onto particle surfaces and create intermolecular cross-linking. The steady-shear viscosity and dynamic viscoelasticity were measured for suspensions flocculated by multichain bridging of associating polymers. The effects of surfactant on the suspension rheology are studied in relation to the bridging conformation. The surfactant molecule behaves as a displacer and the polymer chains are forced to desorb from the particle surfaces. The overall effect of surfactant is the reduction of suspension viscosity. However, the additions of a small amount of surfactant to suspensions, in which the degree of bridging is low, cause a viscosity increase, although the number of chains forming one bridge is decreased by the forced desorption of associating polymer. Since the polymer chains desorbed from one bridge can form another bridge between bare particles, the bridging density over the system is increased. Therefore, the surfactant adsorption leads to a viscosity increase. The surfactant influences the viscosity in two opposing ways depending on the degree of bridging.

Modal Sky-Hook Dampers for Active Suspension Control (능동형 현가시스템을 위한 모드 SKY-HOOK 감쇠 제어기)

  • 곽병학;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.1-11
    • /
    • 1995
  • Active suspension control for vehicles is developed to improve both ride comfort and steering stability which are in trade off relation. In this study, the modal sky-hook controller for 7 D. O. F. model is proposed to resolve the problems such as computaional power restriction and uncertainties in modeling of systems and environments. Modal sky-hook controller reduces the coupling between the modes to be controlled. The simulation result for ride comfort shows that the perform ance of the proposed controller matches that of the optimal controller. Systematic method of determining its gain is proposed. The model sky-hook controller shows the robustness to road irregularity and modeling error.

  • PDF

Analysis of Continuously Variable Damper Characteristics for Semi-Active Suspension Systems (반능동형 현가시스템을 위한 연속가변댐퍼의 특성 해석)

  • 허승진;박기홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.128-137
    • /
    • 2003
  • Continuously variable damper can yield diverse damping forces for a single damping velocity. It is widely used in the semi-active suspension system since, with right control logics, it can enhance ride comfort compared to the passive damper while not degrading driving safety. A key to the successful design of the continuously variable damper is the knowledge of its complex and nonlinear characteristics. In this paper, research has been done for analyzing characteristics of the continuously variable damper. Various damper components have been investigated and their effects upon the force-velocity characteristics of the damper have been examined. The effects of the damper characteristics change upon ride comfort and driving safety have also been investigated by numerical simulations.