• Title/Summary/Keyword: Suspension stability

Search Result 409, Processing Time 0.032 seconds

Effect of pH, Chemical Composition and Additives on Stability of Soymilk Suspension (pH, 화학적 조성 및 첨가제가 두유(豆乳)의 현탁안정성에 미치는 영향)

  • Kim, Eun-Soo;Chung, Seong-Soo;Jo, Jae-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.319-324
    • /
    • 1990
  • The effects of pH, protein and fat content, addition of emulsifiers, stabilizer, sugar, salt and calcium salt on the stability of soymilk suspension were investigated by analyzing the cream separated and precipitates of soymilk which is prepared by various conditions. In the alkaline region of pH, soymilk showed a good stability of the suspension and particularly, above pH 10, precipitates were not formed. When 1.5% of palm oil with 0.4% of glycerine monostearate was added to soymilk in the hydrophile-lipophile balance (HLB) value of 4 to 7, resulted maximal emulsion stability occured below H LB 6. The stability was decreased with increasing the fat concentration and soy oil showed better emulsion stability than that of palm oil. Among the commercial stabilizers, 0.03% of carrageenan was most effective. The stability was not decreased by addition of sugar up to 3% while it was decreased by addition of sodium salt and calcium salt at low level.

  • PDF

Effect of Independent Suspension Function of Hiking Boots on the Stability and Load of Foot (등산화 아웃솔의 독립적 서스펜션 기능이 발의 안정성 및 부하에 미치는 효과)

  • Lee, Ki-Kwang;Choi, Chi-Sun;Eun, Seon-Deok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.115-119
    • /
    • 2006
  • To investigate the effects of independent suspension technology(IST) of hiking boot on the stability and load of foot, eight participants performed medial and lateral drop landing from 33.4cm height and 85cm distance to uneven surface while wearing normal & IST hiking boots. For the stability of foot during the drop landing, the balance angle & suspension angle and rearfoot angle was analyzed using high-speed video analysis. Also kinetic analysis using the force plate and insole pressure measurement was conducted to analyze vertical & breaking ground reaction force and pressure distribution. Not only the balance angle & suspension angle but also rearfoot angle was improved with IST boots for lateral drop landing. These results indicate the IST boots may have the suspension function which keeps the foot to be stable during landing. However the IST boots did not show any effect for medial landing. This might be related to the hardness of medial part of outsole. Therefore the softer outsole of medial part could be recommended. Furthermore the impact force & breaking force and insole pressure were reduced with IST boot. These results means that IST boot has not only cushioning effect but also good grip effect. Therefore the hiking boots applied the independent suspension function may help to reduce fatigue and prevent injury such as ankle sprain in hiking on uneven surface.

Design and Performance Evaluation of Electro-rheological Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 전기유변유체 쇽 업소버의 설계 및 성능평가)

  • Sung, Kum-Gil;Choi, Seung-Bok;Park, Min-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.444-452
    • /
    • 2010
  • This paper presents design and performance evaluation of electro-rheological(ER) shock absorber for electronic control suspension(ECS). In order to achieve this goal, a cylindrical ER shock absorber that satisfies design specifications for a mid-sized commercial passenger vehicle is designed and manufactured to construct ER suspension system for ECS. After experimentally evaluating dynamic characteristics of the manufactured ER shock absorber, the quarter-vehicle ER suspension system consisting of sprung mass, spring, tire and the ER shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle ER suspension system, the skyhook controller is implemented for the realization of quarter-vehicle ER suspension system. In order to present control performance of ER shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

Frequency Dependent Damping for a Nonlinear Vehicle Active Suspension System (비선형 차량능동현가시스템의 주파수 감응감쇠 특성연구)

  • Kim, J.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.45-54
    • /
    • 2011
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. Among the various suspension systems, an active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. In the process of the linearization for the nonlinear active suspension system, the frequency dependent damping method is used for the exact modelling to the real model. The pressure control valve which is controlled by proportional solenoid is the most important component in the active suspension system. The pressure control valve has the dynamic characteristics with 1st order delay. Therefore, It's necessary to adopt the lead compensator to compensate the dynamics of the pressure control valve. The sampling time is also important factor for the control performances. The sampling time value is proposed to satisfy the system performances. After the modelling and simulation for the pressure control valve and vehicle dynamic, the performances of the vehicle ride quality and the stability are enhanced.

A Study on Diagnostic Method for Suspension Elements of Bogie (대차 현가계 구성요소 진단방법에 관한 연구)

  • 허현무;최경진
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.476-483
    • /
    • 2000
  • Like other vehicles, the suspension elements of railway rolling stock have influence on running stability and ride quality. Thus, faults detection for suspension elements is important to prevent an accidents of train and to ensure safety against derailment. This study was started to grasp the feasibility of diagnostic method for the suspension elements of bogie without disassembling. Through several tests by running test rig, we found that fault detection for suspension elements was possible. Here, we describe some results.

  • PDF

A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS (HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구)

  • Kim, Chi-Ung;Kim, Moon-June;Rhee, Eun-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.

Stability Analysis of a Maglev Vehicle Utilizing Electromagnetic Suspension System (상전도 흡인식 자기부상열차의 주행 안정성 해석)

  • Han, Hyung-Suk;Kim, Sook-Hee;Yim, Bong-Hyuk;Hur, Young-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.118-126
    • /
    • 2008
  • The levitation stability of a Maglev vehicle utilizing electromagnetic suspension is primarily influenced by the deformation, roughness, and vibration of the guideway. Optimum design for both the vehicle and the guideway is desirable in order to reduce guideway construction cost, while meeting requirements for stability and ride quality. This paper presents an analysis of the levitation stability of the UTM-01, an urban Maglev vehicle, using a numerical simulation. The ODYN/Maglev, a dynamics analysis program, is used to simulate dynamics to evaluate the stability. A running test of the UTM-01 is also carried out to verify the results of the simulation. Using the simulation results, the levitation stability of the UTM-01 can be numerically analyzed at a variety of vehicle speeds.

A Study on the Influence of Q-filter on Disturbance Observer Controller for Electro-Magnetic Suspension Systems (자기부상시스템의 외란관측기 제어기에 Q 필터가 미치는 영향에 관한 연구)

  • Jeon, Chanyoung;Jang, Sohyun;Jo, Nam-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.104-110
    • /
    • 2015
  • The disturbance observer (DOB) controller has been widely used in various industrial applications since it is capable of achieving robust stability and disturbance rejection. In this paper, we study the effect of Q-filter on disturbance observer controller for Electro-Magnetic suspension (EMS) systems. We consider three Q-filters and analyze their effects on the robust stability against parameter uncertainties due to mass variation. Moreover, we investigate the influence of sensor noise for three Q-filters. According to our study, robust stability improves as the order of Q-filter decreases. On the other hand, the larger the order of Q-filter, the more the effect of sensor noise can be removed.

Studies on Stability of Soymilk Suspension (두유(豆乳)의 현탁안정성에 관한 연구)

  • Kim, Eun-Soo;Jo, Jae-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.312-318
    • /
    • 1990
  • The effects of blanching, homogenization and heat sterilization on the stability of soymilk suspension were investigated by determination of nitrogen solubility index(NSI) of suspension and measuring the volume of precipitates and cream separated. The results obtained were that the NSI was decreased as the blanching temperature increased from $50^{\circ}C\;to\;80^{\circ}C$. The soybean particles having $8{\mu}$ by grinding showed more stable soymilk than that of $53{\mu}$. The stability was increased as the homogenizing pressure increased to $200kg/cm^2$ and repeated homogenizing process gave more stability than single one. The sterilization resulted a significant decrease in stability as it was heated at $120^{\circ}C-125^{\circ}C$ for more than 30 minutes.

  • PDF

Wind-resistant performance of cable-supported bridges using carbon fiber reinforced polymer cables

  • Zhang, Xin-Jun;Ying, Lei-Dong
    • Wind and Structures
    • /
    • v.10 no.2
    • /
    • pp.121-133
    • /
    • 2007
  • To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are schemed, in which the cable's cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the dynamic behavior, aerostatic and aerodynamic stability of the two bridges are conducted by 3D nonlinear analysis, and the effect of different cable materials on the wind resistance is discussed. The results show that as CFRP cables are used in cable-supported bridges, (1) structural natural frequencies are all increased, and particularly great increase of the torsional frequency occurs for suspension bridges; (2) under the static wind action, structural deformation is increased, however its aerostatic stability is basically remained the same as that of the case with steel cables; (3) for suspension bridge, its aerodynamic stability is superior to that of the case with steel cables, but for cable-stayed bridge, it is basically the same as that of the case with steel stay cables. Therefore as far as the wind resistance is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable's cross-sectional area should be determined by the principle of equivalent axial stiffness.