• 제목/요약/키워드: Suspension pressure

검색결과 185건 처리시간 0.026초

타이어 압력 변화에 따른 MR 현가장치를 장착한 전체차량의 제어성능평가 (Performance Evaluation of a Full Vehicle with Semi-active MR Suspension at Different Tire Pressure)

  • 김형섭;성민상;최승복;권오영
    • 한국소음진동공학회논문집
    • /
    • 제21권11호
    • /
    • pp.1067-1073
    • /
    • 2011
  • This paper presents the performance of a full vehicle MR suspension system at different tire pressure. The pressure of tire is related to tire stiffness, which is significantly affects the performance of suspension system. Therefore, in this research, the effectiveness of tire pressure on full vehicle MR suspension is evaluated. As a first step, the characteristic of tire with respect to pressure is experimentally tested and modeled. After that, the governing equation of MR damper and full vehicle MR suspension system are derived. The skyhook controller is implemented and the vibration control performance of full vehicle MR suspension is evaluated via simulation with respect to the tire pressure.

타이어 압력 변화에 따른 MR 현가장치를 장착한 전체차량의 제어성능평가 (Performance Evaluation of a Full Vehicle with Semi-Active MR Suspension at Different Tire Pressure)

  • 김형섭;성민상;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.337-342
    • /
    • 2011
  • This paper presents the performance of a full vehicle MR suspension system at different tire pressure. The pressure of tire is related to tire stiffness, which is significantly affects the performance of suspension system. Therefore, in this research, the effectiveness of tire pressure on full vehicle MR suspension is evaluated. As a first step, the characteristic of tire with respect to pressure is experimentally tested and modeled. After that, the governing equation of MR damper and full vehicle MR suspension system are derived. The skyhook controller is implemented and the vibration control performance of full vehicle MR suspension is evaluated via simulation with respect to the tire pressure.

  • PDF

Low-Band Type 능동형 현가제어를 위한 직동식 전자비례 감압밸브의 개발 (Development of a Direct-Operated Proportional Pressure Reducing Valve for Low-Band Type Active Suspension Control)

  • 홍예선;류시복;김영식
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.75-84
    • /
    • 1994
  • In general direct-operated pressure reducing valves have been gardly applied to a dynamic control system such as active suspension control because of their poor control stability. But they are more robust than pilot-operated type and do not need pilot control flow. In this paper development of a new direct-operated proportional pressure reducing valve for low-band type active suspension control is reported. By means of a special damper directly linked to the valve spool, the control stability could be effectively improved without drawback in response time. The linearity error was less than $\pm$3.5%. Applied to an experimental active suspension system the new valve showed the $-90^{\circ}$ phase delay at 4Hz with 20% sinusoidal signal input and could control the suspension system with almost same performance as that with a pilot-operated type valve.

  • PDF

비선형 차량능동현가시스템의 주파수 감응감쇠 특성연구 (Frequency Dependent Damping for a Nonlinear Vehicle Active Suspension System)

  • 김주용
    • 한국기계기술학회지
    • /
    • 제13권2호
    • /
    • pp.45-54
    • /
    • 2011
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. Among the various suspension systems, an active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. In the process of the linearization for the nonlinear active suspension system, the frequency dependent damping method is used for the exact modelling to the real model. The pressure control valve which is controlled by proportional solenoid is the most important component in the active suspension system. The pressure control valve has the dynamic characteristics with 1st order delay. Therefore, It's necessary to adopt the lead compensator to compensate the dynamics of the pressure control valve. The sampling time is also important factor for the control performances. The sampling time value is proposed to satisfy the system performances. After the modelling and simulation for the pressure control valve and vehicle dynamic, the performances of the vehicle ride quality and the stability are enhanced.

현가시스템용 압력제어밸브에 관한 연구 (A Study on Hydraulic Pressure Reducing Valve for Active Suspension Systems)

  • 김동원;양승현;이석원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2528-2530
    • /
    • 2005
  • In this paper, a study on the analysis and design of an electro-hydraulic pressure reducing valve for active suspension system of car is fulfilled. Also, the structurally improved direct-acting electro-hydraulic pressure reducing valve is proposed to satisfy the performance that active suspension system requires. To prove the possibility whether the proposed valve can be used for active suspension system or not, the mathematical modeling and analysis for this valve is fulfilled and the experiment of response to controlled pressure is achieved. Here we conformed the response speed to controlled pressure of the structurally improved valve changed for the better by modifying the shape of spool such as the structure which make use of the power of controlled pressure derived from the area difference between two section areas of valve spool.

  • PDF

차량 능동 현가 장치용 유압 액추에이터의 감쇠력 특성에 관한 연구 (A Study on the Characteristics of Damping Force in a Hydraulic Actuator for Vehicle Active Suspension System)

  • 윤영환;최명진
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.150-158
    • /
    • 2002
  • Through experimental works, the damping force vibration problem was investigated, which results from valve and surge pressure in the oil return line of the hydraulic circuit of an active suspension system in a passenger cu. Experiments were carried out under passive system, where an orifice valve was closed and non-active system, where an orifice valve was opened, using a pressure control valve controlled by solenoid. The effects of parameters of the valve overlap and accumulator on smoothing surge pressure was elucidated. It was proved that the apparent variation of damping force due to the overlap amount of pressure control valve is the most important factor to control the damping force variation. The procedure of the experimental works shows the development process of a proportional pressure control valve in the hydraulics system of an active suspension system of passenger car.

Al 분말과 Water 혼합물의 연소특성 연구 (Combustion Characteristics of Al powder with Water Suspension)

  • 기완도;김광연;;조용호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.157-162
    • /
    • 2012
  • 미크론 크기의 알루미늄 분말과 물 혼합물의 기초 연소 특성 연구를 진행하였다. 대기압 환경에서 연소속도에 영향을 미치는 당량비와 혼합물 밀도를 변화시켜 알루미늄-물 혼합물의 연소 특성 연구를 진행하였다. 이를 바탕으로 고압 환경하에서의 알루미늄 분말과 물 혼합물에 대한 연소 특성을 연구하기 위한 장치를 설계하였다. 고압 환경에서 2~50기압 범위에서는 압력에 따른 연소속도의 영향은 나노 분말의 연소 특성과 동일하였으나, 50~70기압 범위에서는 급격한 연소속도 증가 현상이 관찰되었다. 당량비에 따른 실험에서는 산화제 과잉(eq=1.5) 조건에서는 50기압 이상에서는 연소가 진행되지 않았다.

  • PDF

타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰 (Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure)

  • 맹영준;성민상;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.343-348
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological (MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.

  • PDF

차량능동현가 시스템의 압력제어밸브 최적화에 관한 연구 (A study on the optimization of pressure control valve for vehicle active suspension system)

  • 윤영환;안수경;이종욱;김지언
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1155-1160
    • /
    • 1993
  • The control-ability of vehicle active suspension is strongly affected by the performance of pressure control valve especially in the view of dynamic response and energy consumption. Important design parameters in the valve are selected and the effect of variation of those is analized experimentally to enhance the performance of pressure control valve used in Active Suspension.

  • PDF

셀룰로오스 나노피브릴 현탁액의 탈수성 평가 및 양이온성 고분자전해질 투입의 영향 (Evaluation of Dewatering of Cellulose Nanofibrils Suspension and Effect of Cationic Polyelectrolyte Addition on Dewatering)

  • 류재호;심규정;윤혜정
    • 펄프종이기술
    • /
    • 제46권6호
    • /
    • pp.78-86
    • /
    • 2014
  • Since cellulose nanofibrils (CNF) has large specific surface area and high water holding capacity, it is very difficult task to remove water from the CNF suspension. However, dewatering of CNF suspension is a prerequisite of following processes such as mat forming and drying for the application of CNF. In this study, we evaluated the drainage of cellulose fibers suspension under vacuum and pressure conditions depending on the number of grinding passes. Also, the effect of the addition of cationic polyelectrolyte on dewatering ability of CNF suspension was investigated. Regardless of dewatering condition, the total drained water amount as well as the drainage rate were decreased with an increase in the number of grinding passes. Pressure dewatering equipment enables us to prepare wet CNF mat with relatively higher grammage. The cationic polyelectrolytes improved the dewatering ability of CNF suspension by controlling the zeta potential of CNF. The fast drainage was obtained when CNF suspension had around neutral zeta potential.