• Title/Summary/Keyword: Suspension model

Search Result 870, Processing Time 0.037 seconds

Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension (현가장치 무질량 링크를 이용한 효율적인 차량동역학 모델 개발)

  • Jung Hongkyu;Kim Sangsup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.99-108
    • /
    • 2005
  • This paper represents an efficient modeling method of a suspension system for the vehicle dynamic simulation. The suspension links are modeled as composite joints. The motion of wheel is defined as relative one degree of freedom motion with respect to car body. The unique relative kinematic constraint formulation between the car body and wheel enables to derive equations of motion in terms of wheel vertical motion. Thus, vehicle model has ten degrees of freedom. By using velocity transformation method, the equations of motion of the vehicle is systematically derived without kinematic constraints. Various vehicle simulation such as J-turn, slowly increasing steer, sinusoidal sweep steer and bump run has been performed to verify the validity of the suggested vehicle model.

Semi-Active Control of a Suspension System with a MR Damper of a Large-sized Bus (MR 댐퍼를 이용한 대형 버스 현가장치의 반능동 제어)

  • Yoon, Ho-Sang;Moon, Il-Dong;Kim, Jae-Won;Oh, Chae-Youn;Lee, Hyung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.683-690
    • /
    • 2012
  • In this work, the semi-active control of a large-sized bus suspension system with an MR damper was studied. An MR damper model that can aptly describe the hysteretic characteristics of an MR damper was adopted. Parameter values of the MR damper model were suitably modified by considering the maximum damping force of a passive damper used in the suspension system of a real large-sized bus. In addition, a fuzzy logic controller was developed for semi-active control of a suspension system with an MR damper. The vertical acceleration at the attachment point of the MR damper and the relative velocity between sprung and unsprung masses were used as input variables, while voltage was used as the output variable. Straight-ahead driving simulations were performed on a road with a random road profile and on a flat road with a bump. In straight-ahead driving simulations, the vertical acceleration and pitch angle were measured to compare the riding performance of a suspension system with a passive damper with that of a suspension with an MR damper. In addition, a single lane change simulation was performed. In the simulation, the lateral acceleration and roll angle were measured in order to compare the handling performance of a suspension system using a passive damper with that of a suspension system using an MR damper.

Equivalent Suspension Bridge Model for Tower Design of Multi-span Suspension Bridges (다경간 현수교 주탑 설계를 위한 등가 현수교 모델)

  • Choi, Dong-Ho;Na, Ho-Sung;Yi, Ji-Yop;Gwon, Sun-Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.669-677
    • /
    • 2011
  • The multi-span suspension bridge generally has more than three towers and two main spans. To economically and effectively design a multi-span suspension bridge, the proper stiffness ratio of the center tower to the side tower must be determined. This study was conducted to propose a method of figuring out briefly the structural behavior of the towers in a multi-span suspension bridge. In the equivalent suspension bridge model, the main cable of the multi-span suspension bridge is idealized as an equivalent cable spring, and the external loads of horizontal and vertical forces that were calculated using the tensile forces of the main cable were applied on top of the towers. The equilibrium equations of the equivalent multi-span suspension bridge model were derived and the equations were solved via nonlinear analysis. To verify the proposed method, a sample four-span suspension bridge with a main span length of 3,000 m was analyzed using thefinite element method. The displacements and moment reactions of each tower in the proposed method were compared with the FEM analysis results. Consequently, the results of the analysis of the equivalent suspension bridge model tended to be consistent with the results of the FEM analysis.

Wheelset Steering Angle of Railway Vehicle according to Primary Suspension Property (철도차량 1차현가 특성에 따른 윤축 조향각 성능 분석)

  • Hur, Hyun Moo;Ahn, Da Hoon;Park, Joon-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.597-602
    • /
    • 2015
  • In this paper, we studied the steering performance of wheelset with primary suspension characteristics of railway vehicle. We carry out dynamic analysis and experimental study for the vehicle models which are different primary suspension characteristics. The steering angle of a vehicle model (Case 1) operating in domestic subway lines is insufficient compared with an objective steering angle for curved track. And the steering angle of a vehicle model (Case 2) with improved self-steering performance of wheelset is a little improved compare to previous vehicle model. But also Case 2 model is still insufficient compared with an objective steering angle and has its limit in steering performance. So to overcome this limit of steering performance of passive type railway vehicle, an active steering technology is being developed. In case of vehicle model with active steering system, the steering performance is improved remarkably compared to passive type vehicle model.

Nonlinear $H_{\infty}$ control to semi-active suspension

  • Sampei, Mitsuji;Kubota, Kenta;Hosokawa, Atsukuni;Laosuwan, Patpong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.287-290
    • /
    • 1995
  • Recently H$_{\infty}$ control theory for nonlinear systems based on the Hamilton-Jacobi inequality has been developed. In this paper, we apply the state feedback controller solved via Riccati equation to a semi-active suspension model, two degree of freedom vehicle model, and show that it is effective for vibration control..

  • PDF

Design of Self-Repairing Suspension Systems via Variable Structure Control Scheme (가변구조 제어기법을 이용한 고장허용 현가장치 설계)

  • 김도현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.922-927
    • /
    • 2002
  • A variable structure control (VSC) based model following control system that possesses fault detection and isolation (FDI) capability as well as fault tolerance property is proposed. The nonlinear part of the proposed control law. whose magnitude is determined by sliding variables, plays the role of suppressing fault effect. Thus, approximate fault reconstruction is also possible via the analysis of sliding variables. The proposed algorithm is applied to an active suspension system of pound vehicles to verify its applicability.

Ride Sensitivity Analysis of a Train Model with Non-linear Suspension Elements (비선형 현가요소를 가진 철도차량의 승차감 민감도 해석)

  • Tak, Tae-oh;Kim, Myung-hun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.233-240
    • /
    • 1998
  • In this study, ride sensitivity analysis of train with non-linear suspension elements is performed. Non-linear characteristics of springs and dampers for primary and secondary suspensions of a train is parameterized. Equation of motion of the train model is derived, and using the direct differentiation method, sensitivity equations are obtained. For a nominal ride quality performance index, sensitivity analysis with respect to various design parameters regarding non-linear suspension parameters is carried out.

  • PDF

Control of an Active Vehicle Suspension Using Electromagnetic Motor

  • Kim, Woo-Sub;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.282-285
    • /
    • 2003
  • Two criteria of good vehicle suspension performance are typically their ability to provide good road handling and increased passenger comfort. So far, The existing active vehicle suspension uses pneumatic and hydraulic actuators that enhance road handling and passenger comfort. But these kinds of actuators have nonlinear characteristic less than an electromagnetic motor. In this research, we are trying to examine the feasibility and the experiment of an active vehicle suspension using electromagnetic motor in order to enhance the ride quality because existing active vehicle suspension using active power sources such as compressors, hydraulic pumps has nonlinear characteristic. Active vehicle suspension using electromagnetic motor will have the ability to behave differently on smooth and rough roads. The desired response should be soft in order to enhance ride comfort, but when the road surface is too rough the suspension should stiffen up to avoid hitting its limits.

  • PDF

Nonlinear aerostatic analysis of long-span suspension bridge by Element free Galerkin method

  • Zamiria, Golriz;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.75-84
    • /
    • 2020
  • The aerostatic stability analysis of a long-span suspension bridge by the Element-free Galerkin (EFG) method is presented in this paper. Nonlinear effects due to wind structure interactions should be taken into account in determining the aerostatic behavior of long-span suspension bridges. The EFG method is applied to investigate torsional divergence of suspension bridges, based on both the three components of wind loads and nonlinearities of structural geometric. Since EFG methods, which are based on moving least-square (MLS) interpolation, require only nodal data, the description of the geometry of bridge structure and boundaries consist of defining a set of nodes. A numerical example involving the three-dimensional EFG model of a suspension bridge with a span length of 888m is presented to illustrate the performance and potential of this method. The results indicate that presented method can effectively be applied for modeling suspension bridge structure and the computed results obtained using present modeling strategy for nonlinear suspension bridge structure under wind flow are encouragingly acceptable.

Critical Suspension Condition of Particles in a Shaking Vessel of Solid-Liquid System (고-액계 진동교반에서 입자의 부유화 한계조건)

  • Lee, Young-Sei;Kim, Moon-Gab;Kato, Yoshihito
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.73-81
    • /
    • 1999
  • Shake mixing has been widely used in cell culture. The mixing performance for shake mixing, however, has not been reported quantitatively. The critical circulating frequency and the power consumption for complete suspension of particles, based on the definition of Zwietering, were measured in a shaking vessel containing a solid-liquid system. The critical suspension frequency was correlated by the equation from Baldi's particle suspension model modified with the physical properties of the particles. Critical suspension frequency was correlated as following ; $$N_{JS}={\frac{0.58\;d{_p}^{0.06}(g{\Delta}{\rho}/{\rho}_L)^{0.004}X^{0.03}}{D^{0.35}d^{0.17}{\upsilon}^{0.04}}}$$ The power consumption at the critical suspension condition in the shaking vessel was less than that in an agitated vessel with impeller.

  • PDF