• 제목/요약/키워드: Suspension Systems

검색결과 530건 처리시간 0.027초

ENHANCEMENT OF VEHICLE STABILITY BY ACTIVE GEOMETRY CONTROL SUSPENSION SYSTEM

  • Lee, S.H.;Sung, H.;Kim, J.W.;Lee, U.K.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.303-307
    • /
    • 2006
  • This paper presents the enhancement of vehicle stability by active geometry control suspension(AGCS) system as the world-first, unique and patented chassis technology, which has more advantages than the conventional active chassis control systems in terms of the basic concept. The control approach of the conventional systems such as active suspensions(slow active, full active) and four wheel steering(4WS) system is directly to control the same direction with acting load to stabilize vehicle behavior resulting from external inputs, but AGCS controls the cause of vehicle behaviors occurring from vehicle and thus makes the system stable because it works as mechanical system after control action. The effect of AGCS is the remarkable enhancement of avoidance performance in abrupt lane change driving by controlling the rear bump toe geometry.

자기부상시스템의 외란관측기 제어기에 Q 필터가 미치는 영향에 관한 연구 (A Study on the Influence of Q-filter on Disturbance Observer Controller for Electro-Magnetic Suspension Systems)

  • 전찬영;장소현;조남훈
    • 조명전기설비학회논문지
    • /
    • 제29권10호
    • /
    • pp.104-110
    • /
    • 2015
  • The disturbance observer (DOB) controller has been widely used in various industrial applications since it is capable of achieving robust stability and disturbance rejection. In this paper, we study the effect of Q-filter on disturbance observer controller for Electro-Magnetic suspension (EMS) systems. We consider three Q-filters and analyze their effects on the robust stability against parameter uncertainties due to mass variation. Moreover, we investigate the influence of sensor noise for three Q-filters. According to our study, robust stability improves as the order of Q-filter decreases. On the other hand, the larger the order of Q-filter, the more the effect of sensor noise can be removed.

능동형 차량 현가장치의 성능 향상을 위한 구조 최적화 (Structural Optimization of Active Vehicle Suspension Systems)

  • 김창동;정의봉
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1381-1388
    • /
    • 1993
  • 본 연구에서는 구조계와 제어계가 결합된계에 대하여, 성능 평가함수의 구조 설계변수에 대한 감도를 Riccati방정식으로부터 직접 해석할 수 있는 효율적인 방안을 제시하여 동시최적설계가 가능토록한다. 그리고 유색잡음의 불규칙 노면입력을 받는 차체탄성을 고려한 Hac의 2륜 차량의 모델에 LQG제어를 행한 경우에 대하여, 본 연구 방법을 적용시켜 동시 최적화를 수행한 제어성능 특성을 종래의 최적제어만에 의한 제어성능과 비교, 검토 한다. 구조설계변수로는 현가장치의 강성특성, 감쇠특성 및 현가장치 지지점의 위치로 선정한다.

DEVELOPMENT OF A REVERSE CONTINUOUS VARIABLE DAMPER FOR SEMI-ACTIVE SUSPENSION

  • Yoon, Young-Hwan;Choi, Myung-Jin;Kim, Kyung-Hoon
    • International Journal of Automotive Technology
    • /
    • 제3권1호
    • /
    • pp.27-32
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions fur passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed. It is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-offbecomes smooth when the fixed orifice size increases. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20N, linearity, and variance of damping farce. The damping farce variance is wide and continuous, and is controlled by the spoof opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort

  • Ni, Y.Q.;Ye, S.Q.;Song, S.D.
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.53-74
    • /
    • 2016
  • This paper presents an experimental study on constructing a tunable secondary suspension for high-speed trains using magneto-rheological fluid dampers (referred to as MR dampers hereafter), in the interest of improving lateral ride comfort. Two types of MR dampers (type-A and type-B) with different control ranges are designed and fabricated. The developed dampers are incorporated into a secondary suspension of a full-scale high-speed train carriage for rolling-vibration tests. The integrated rail vehicle runs at a series of speeds from 40 to 380 km/h and with different current inputs to the MR dampers. The dynamic performance of the two suspension systems and the ride comfort rating of the rail vehicle are evaluated using the accelerations measured during the tests. In this way, the effectiveness of the developed MR dampers for attenuating vibration is assessed. The type-A MR dampers function like a stiffness component, rather than an energy dissipative device, during the tests with different running speeds. While, the type-B MR dampers exhibit significant damping and high current input to the dampers may adversely affect the ride comfort. As part of an ongoing investigation on devising an effective MR secondary suspension for lateral vibration suppression, this preliminary study provides an insight into dynamic behavior of high-speed train secondary suspensions and unique full-scale experimental data for optimal design of MR dampers suitable for high-speed rail applications.

자동 시각 검사 시스템 -현수애자의 미세균열 검출- (Automatic Visual Inspection System -Detection of Insulator′s Minute Crack-)

  • 이상용;김용철
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.576-579
    • /
    • 2004
  • 자동화 설비 도입으로 생산성이 향상되었지만, 양품뿐만 아니라 불량품 또한 대량 생산할 가능성이 있어서 전수검사가 필수적이 되고 있다. 검사자가 많은 양의 제품을 전수검사 한다는 것은 무리가 따르기 때문에 자동 검사 시스템에 대한 연구가 다양하게 진행되어 왔다. 본 연구에서는 컴퓨터 비전을 이용한 자동 시각 검사 시스템으로서 현수애자의 미세균열 자동 검출 시스템을 개발하였다. 현수애자의 미세균열 자동 검사 시스템: 현수애자의 미세균열을 검출하기 위해, 현수애자를 턴 텐이블 위에서 회전시키고, 프로그래시브 스캔 카메라로 애자의 영상을 획득하고, 이 영상을 전처리 하여 그림자, 노이즈 등을 제거하고, 특징을 이용하여 미세균열을 검출한다.

  • PDF

L 형 전륜 로어 암의 대하중 강도 해석 기법 연구 (A Study on the Non-Linear Static Analysis for L-type Front Lower Control Arm)

  • 이순욱;구자석;송민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.453-458
    • /
    • 2008
  • Under driving condition, A vehicle experiences various kinds of loads, which brings on the buckling and fracture of suspension systems. Lower control arm (LCA), which consists of 2 bush joints and 1 ball joint connection, is the one of the most important parts in the suspension system. The bush joints absorb the impact load and reduce the vibration from the road. When analyzing the LCA behavior, it is important to understand the material properties and boundary conditions of bushing systems correctly, because of the nonlinearity characteristics of the rubber. In this paper, in order to predict the large scale deformation of the LCA more precisely, three factors are newly suggested, that is, coupling of bush stiffness between translation and rotation, bush extraction force and maximum rotation angle of ball joint. LCA stiffness is estimated by CAE and component test. Analysis and test results are almost same and the validity of considering three factors in LCA analysis is verified.

  • PDF

램프 틸트에 의한 언로드 특성 분석 (Analysis of Unload Characteristics by Ramp Tilt)

  • 이용현;김기훈;김석환;이상직;박노철;박영필;박경수;김철순;유진규
    • 정보저장시스템학회논문집
    • /
    • 제5권2호
    • /
    • pp.70-75
    • /
    • 2009
  • Most hard disk drives uses load/unload technology because of benefits as like an increased areal density, a reduced power consumption and an improved shock resistance. However, ramp tilt induced by ramp manufacture and assembly causes mechanical problems such as unload fail in case of exceeding ramp tolerance. In this paper, we focus on experimental analysis for unloading characteristics affected by ramp tilt. We repeatedly perform load/unload test as 500,000 cycles for original model and ramp tilt model. This paper shows that it is possible to analyze unload characteristics through measuring scratch and wear of suspension lift-tab, ramp, suspension dimple-flexure and disk. We also identify structural relation between suspension lift-tab and ramp through scratch and wear of suspension lift-tab and ramp. As the result of measurement and analysis, we can investigate decrease of unloading performance in ramp tilt model.

  • PDF

진화전략과 신경회로망에 의한 능도 현가장치의 제어기 설계 (A Controller Design for Active Suspension System Using Evolution Strategy and Neural Network)

  • 김대준;천종민;전향식;최영규;김성신
    • 제어로봇시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.209-217
    • /
    • 2001
  • In this paper, we propose a linear quadratic regulator(LQR) controller design for the active suspension using evolution strategy(ES) and neural network. We can improve the inherent suspension problem, the trade-off between ride quality and suspension travel by selecting appropriate weight in the LQR-objective function. Since any definite rules for selecting weights do not exist, we replace the designers trial-and-error method with ES that is an optimization algorithm. Using the ES, we can find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle. The relationship between the frequencies and proper control gains are generalized by use of the neural networks. When the vehicle is driven, the trained neural network is activated and provides the proper gains for operating frequencies. And we adopted double sky-hook control to protect car component when passing large bump. Effectiveness of our design has been shown compared to the conventional sky-hook controller through simulation studies.

  • PDF

A Novel IPT System Based on Dual Coupled Primary Tracks for High Power Applications

  • Li, Yong;Mai, Ruikun;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.111-120
    • /
    • 2016
  • Generally, a single phase H-bridge converter feeding a single primary track is employed in conventional inductive power transfer systems. However, these systems may not be suitable for some high power applications due to the constraints of the semiconductor switches and the cost. To resolve this problem, a novel dual coupled primary tracks IPT system consisting of two high frequency resonant inverters feeding the tracks is presented in this paper. The primary tracks are wound around an E-shape ferrite core in parallel which enhances the magnetic flux around the tracks. The mutual inductance of the coupled tracks is utilized to achieve adjustable power sharing between the inverters by configuring the additional resonant capacitors. The total transfer power can be continuously regulated by altering the pulse width of the inverters' output voltage with the phase shift control approach. In addition, the system's efficiency and the control strategy are provided to analyze the characteristic of the proposed IPT system. An experimental setup with total power of 1.4kW is employed to verify the proposed system under power ratios of 1:1 and 1:2 with a transfer efficiency up to 88.7%. The results verify the performance of the proposed system.