• 제목/요약/키워드: Suspension Bush

검색결과 24건 처리시간 0.025초

파라미터 해석을 통한 차량 성능 예측 기법 연구 (Study on the Prediction Technique of Vehicle Performance Using Parameter Analysis)

  • 김기창;김찬묵;김진택
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.995-1000
    • /
    • 2010
  • With the development of the auto industry, the automobile manufacturers demand to shorten development period and reduce the cost. Compared with the traditional method, applying the virtual prototype is more economical. This paper presents a method for parameters sensitivity analysis and optimizing the performance of vehicle noise and vibration. The existing design processes were repeatedly analyzed with a focus on vehicle performance to decide the design parameters of dimension, thickness, mounting type of body and chassis systems in the vehicle development period. This paper describes the prediction technique of vehicle performance using L18 orthogonal array layout, quality deviation analysis and parameter sensitivity analysis for robust design. This paper analyzed the performance correlation equation through the frequency and sensitivity database according to a design factor change. The new concept is that the performance prediction is possible without repeated activities of test and analysis. This paper described the parameter analysis applications such as bush dynamic stiffness and bush void direction of rear suspension. Design engineer could efficiently decide the design variable using parameter analysis database in early design stage. These improvements can reduce man hour and test development period as well as to achieve stable NVH performance.

프레임 차량의 주행 진동 저감을 위한 프레임 부시 복소동강성계수 크기 결정에 관한 연구 (A Study on Determination of Complex Stiffness of Frame Bush for Ride-comfort Improvement of Body-on-frame Vehicle)

  • 정면규;김기선;김광준
    • 한국소음진동공학회논문집
    • /
    • 제16권6호
    • /
    • pp.619-626
    • /
    • 2006
  • Body-on-frame type vehicle has a set of frame bushes between body and frame for vibration isolation. Such frame bushes are important vibration transmission paths to passenger space for excitations during driving. In order to reduce the vibration level of passenger space, therefore, change of complex stiffness of the frame bushes is more efficient than modification of other parts of the vehicle such as body, frame and suspension. The purpose of this study is to reduce the vibration level for ride comfort by optimization of complex stiffness of frame bushes. In order to do this, a simple finite element vehicle model was constructed and complex stiffness of the frame bushes was set to be design variables. The objective function was defined to reflect frequency dependence of passenger ride comfort. Genetic algorithm and sub-structure synthesis were applied for minimization of the objective function. After optimization level at a position of interest on the car body was reduced by about 43.7 % in RMS value. Causes for optimization results are discussed.

프레임을 유연체로 고려한 대형트럭 컴퓨터 모델의 개발 (Development of a Computer Model of a Large-sized Truck Considering the Frame as a Flexible Body)

  • 문일동;오재윤
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.197-204
    • /
    • 2003
  • This paper develops a computer model for estimating the handling of a cabover type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using ADAMS. A shock absorber, a rubber bush, and a leaf spring aunt a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC/PATRAN. A mode analysis is performed with the frame model using MSC/NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double lane change test is performed with an actual vehicle. In the double lane change, lateral acceleration, yaw rate, and roll angle are measured. Those test results are compared with the simulation results.

차량 진동특성 해석을 위한 VTL 차량 모델 개발에 관한 연구 (A Study on the Development of the VTL Vehicle Dynamics Model to Analyze Vibration Characteristics)

  • 권성진;배철용;김찬중;이봉현;구병국;노국희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.409-414
    • /
    • 2007
  • Nowadays, with the advancement of computational mechanics, and vehicle dynamics simulation linked up with virtual testing laboratory(VTL) and virtual proving ground(VPG) technologies has become a useful method for analyzing numerous driving performances and diverse noise/vibration characteristics. In this paper, the analytical vehicle model based on multi-body dynamics theory was developed to investigate the vibration characteristics according to various road conditions. For the purpose, the whole vehicle parameters, each vehicle's part parameter, and part connecting elements such as spring, damper, and bush were measured by an experiment. Also, the vehicle dynamics model, which includes the front suspension, rear suspension, steering, front wheel, rear wheel, and body subsystems has been constructed for computer simulation. With the developed vehicle dynamics model, three forces and three moments measured at each wheel center were applied to evaluate and analyze dynamics and vibration characteristics for miscellaneous road conditions.

  • PDF

범프 로드에서 대형트럭 프레임의 탄성효과를 고려한 컴퓨터 모델 개발 (Development of the Computer Model Considering Flexible Effect of a Large-sized Truck on the Bump Road)

  • 문일동;지창헌;김병삼
    • 한국소음진동공학회논문집
    • /
    • 제15권10호
    • /
    • pp.1202-1210
    • /
    • 2005
  • This paper develops a computer model for estimating the bump characterisitcs of a cat)over type large-sized truck. The truck is composed of front and rear suspension systems, a frame, a cab, and ten tires. The computer model is developed using MSC.ADAMS. A shock absorber, a rubber bush, and a leaf spring affect a lot on the dynamic characteristic of the vehicle. Their stiffness and damping coefficient are measured and used as input data of the computer model. Leaf springs in the front and rear suspension systems are modeled by dividing them three links and joining them with joints. To improve the reliability of the developed computer model, the frame is considered as a flexible body. Thus, the frame is modeled by finite elements using MSC.PATRAN. A mode analysis is performed with the frame model using MSC.NASTRAN in order to link the frame model to the computer model. To verify the reliability of the developed computer model, a double wheel bump test is performed with an actual vehicle. In the double wheel bump, vortical displacement, velocity, acceleration are measured. Those test results are compared with the simulation results.

서스펜션 성능 확보를 위한 고강성 차페 개발 프로세스 연구 (A Study on the Development of High Stiffness Body for Suspension Performance)

  • 김기창;김찬묵
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.799-805
    • /
    • 2005
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of Passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band. we can suggest the design guideline about lg cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle Is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between handling and road noise. It makes possible to design the good handling performance vehicle and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

브레이크 저더 개선을 위한 시스템 모드분석 및 민감도해석 (System Mode and Sensitivity Analysis for Brake Judder Reduction)

  • 황인진;박경진
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.142-153
    • /
    • 2005
  • The brake judder is a phenomenon that the steering wheel is abnormally vibrating when the car is braked at a high speed. It is classified by the cold and the hot judder. The former is generated due to the initial uneven disk surface and the latter is resulted from the uneven heat spots on disc surface by repeatedly braking. There are two ways to reduce the judder. One is to control vibration by modification of the disk shapes and pad ingredients. The other is to improve modal characteristics of the suspension system. The latter approach is used in this research. In this paper, the real vehicle test and computer simulation are considered to systematically understand the judder phenomenon of the vehicle. The Macpherson strut suspension is employed. Especially, the judder sensitivity is calculated based on design sensitivity analysis. A bush stiffness was reworked and braking test was done to verify the sensitivity result. The judder reduction by the mode control was verified.

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.

서스펜션 성능 확보를 위한 고강성 차체 개발 프로세스 연구 (A Study on the Development of High Stiffness Body for Suspension Performance)

  • 김기창;김찬묵
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.358-361
    • /
    • 2004
  • This paper describes the development process of high stiffness body for ride and handling performance. High stiffness and light weight vehicle is a major target in the refinement of passenger cars to meet customers' contradictable requirements between ride and handling performance and fuel economy. This paper describes the analysis approach process for high stiffness body through the data level of body stiffness. According to the frequency band, we can suggest the design guideline about Is cornering static stiffness, torsional and lateral stiffness, body attachment stiffness. The ride and handling characteristic of a vehicle is significantly affected by vibration transferred to the body through the chassis mounting points from front and rear suspension. It is known that body attachment stiffness is an important factor of ride and handling performance improvement. And high stiffness helps to improve the flexibility of bushing rate tuning between Handling and road noise. It makes it possible to design the good handling performance vehicle at initial design stage and save vehicles to be used in tests by using mother car at initial design stage. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

자동차 현가장치 설계에 따른 동역학 해석 및 활용 (맥퍼슨 스트러트형 현가장치에 대하여) (Analysis of Vehicle Dynamics with Car Suspension Design)

  • 조승백;임준택
    • 기계저널
    • /
    • 제33권10호
    • /
    • pp.871-883
    • /
    • 1993
  • 차량의 승차감 및 조안 성능을 결정하는 중요한 인자인 현가장치(Supension System) 설계의 최적화를 기하며 실차육성기간을 줄이고 설계 업무의 효율성을 높이기 위하여 각종 차량 특성 인자의 수치화를 통해 여러 가지 해석을 수행하게 된다. 이러한 해석 과정으로는 크게 현가장 치의 기구학적 특성-Kinematic Analysis-과 부시 (Bush)와 스프링 (Spring) 등의 컴플라이언스 (Compliance) 효과 - 쿼지스테틱 어낼러시스 (Quasistatic Analysis)-와 전체차량의 주행 시뮬 레이션 (simulation)을 통한 설계차량의주행안정성 검토-풀 비클 어낼러시스 (Full Vehicle Analysis)- 등이 있다. 이 글에서는 승용차의 현가장치중 대표적인형인 맥퍼슨 스터러트형에 대 하여 1) 기구학적 특성, 2) 부시와 스프링 등의 컴플라이언스 효과, 3) 전체차량의 주행 시뮬레 이션을 통한 차량의 주행 안정성 검토의 순으로 각 단계별 주요 검토 항목과 인자, 그리고 실제 차량에서의 현상에 대하여 소개한다.

  • PDF