• Title/Summary/Keyword: Suspended solid

Search Result 436, Processing Time 0.027 seconds

Importance of Strain Improvement and Control of Fungal cells Morphology for Enhanced Production of Protein-bound Polysaccharides(β-D-glucan) in Suspended Cultures of Phellinus linteus Mycelia (Phellinus linteus의 균사체 액상배양에서 단백다당체(β-D-glucan)의 생산성 향상을 위한 균주 개량과 배양형태 조절의 중요성)

  • Shin, Woo-Shik;Kwon, Yong Jung;Jeong, Yong-Seob;Chun, Gie-Taek
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.220-229
    • /
    • 2009
  • Strain improvement and morphology investigation in bioreactor cultures were undertaken in suspended cultures of Phellinus linteus mycelia for mass production of protein-bound polysaccharides(soluble ${\beta}$-D-glucan), a powerful immuno-stimulating agent. Phellineus sp. screened for this research was identified as Phellinus linteues through ITS rDNA sequencing method and blast search, demonstrating 99.7% similarity to other Phellinus linteus strains. Intensive strain improvement program was carried out by obtaining large amounts of protoplasts for the isolation of single cell colonies. Rapid and large screening of high-yielding producers was possible because large numbers of protoplasts ($1{\times}10^5{\sim}10^6\;protoplasts/ml$) formed using the banding filtration method with the cell wall-disrupting enzymes could be regenerated in relatively high regeneration frequency($10^{-2}{\sim}10^{-3}$) in the newly developed regeneration medium. It was demonstrated that the strains showing high performances in the protoplast regeneration and solid growth medium were able to produce 5.8~6.4%(w/w) of ${\beta}$-D-glucan and 13~15 g/L of biomass in stable manners in suspended shake-flask cultures of P. linteus mycelia. In addition, cell mass increase was observed to be the most important in order to enhance ${\beta}$-D-glucan productivity during the course of strain improvement program, since the amount of ${\beta}$-D-glucan extracted from the cell wall of P. linteus mycelia was almost constant on the unit biomass basis. Therefore we fully investigated the fungal cell morphology, generally known as one of the key factors affecting cell growth extent in the bioreactor cultures of mycelial fungal cells. It was found that, in order to obtain as high cell mass as possible in the final production bioreactor cultures, the producing cells should be proliferated in condensed filamentous forms in the growth cultures, and optimum amounts of these filamentous cells should be transferred as active inoculums to the production bioreactor. In this case, ideal morphologies consisting of compacted pellets less than 0.5mm in diameter were successfully induced in the production cultures, resulting in shorter period of lag phase, 1.5 fold higher specific cell growth rate and 3.3 fold increase in the final biomass production as compared to the parallel bioreactor cultures of different morphological forms. It was concluded that not only the high-yielding but also the good morphological characteristics led to the significantly higher biomass production and ${\beta}$-D-glucan productivity in the final production cultures.

High Strength Slaughter Wastewater Treatment in a Novel Combined System of Hybrid-Rotating Biological Contactor and Biological Aerated Filter (Hybrid-RBC와 BAF의 조합공정을 이용한 고농도 도축폐수의 처리 특성)

  • Jung, Chan-Il;Ahn, Jo-Hwan;Bae, Woo-Keun;Kim, Seung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.77-84
    • /
    • 2011
  • This study was conducted to develop a novel combined system of a hybrid rotating biological contactor (RBC) process that was composed of an attached- and suspended- biomass reactor, followed by a settler and a biological aerated filter (BAF) column to treat a high strength slaughter wastewater. Long term influences of organic and nitrogen loading rates were investigated to see how the combined system worked in terms of the removal efficiency. A synthetic wastewater containing a pork cutlet steak source (commercially available) and swine blood was used to feed the combined system. The hybrid RBC process showed excellent removals: about 95% for soluble COD and 85% for ammonium nitrogen. However, the unsettled solids seriously deteriorated the removal efficiency of total COD (TCOD) and total nitrogen (TN) in the RBC process. A significant fraction of the TCOD and suspended solids (SS) was further removed in the BAF column although the effluent quality was still unsatisfactory, giving TCOD 300 mg/L, SS 180 mg/L and TN 59 mg/L. An addition of polyaluminium chloride into the RBC effluent improved the performance of the settler and BAF, producing an excellent quality of final effluent; TCOD 16.5 mg/L, SS 0 mg/L, TN 55.5 mg/L, TP 1.3 mg/L. Therefore, it was confirmed that the combined system of hybrid RBC and BAF could treat a high strength slaughter wastewater excellently.

Pollution of the Imgok Creek and the East Sea by the Abandoned Coal Mine Drainage in Gangdong-myeon, Gangreung, Kangwon-do (강원도 강릉시 강동면에 분포하는 폐탄광으로부터의 배수에 의한 임곡천 및 동해의 오염)

  • Heo, Bong;Yu, Jae-Young
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.1
    • /
    • pp.44-55
    • /
    • 1998
  • Imgok creek is the most severly polluted one out of the streams which have been being polluted by acid drainages from the abandoned coal mines in the Gangdong-Myeon area, the central part of the so called Gangreung coal field. Imgok creek is being mainly polluted by the drainage from Youngdong coal mine, which supplies such pollutants as Mg, Fe, Al, Si, Ca, Mn, and SO$_4$as major dissolved components and Cr, Co, Ni, Cu, Zn, Rb, Sr, Cd, Pb, and U as minor dissolved components. After the influx, the pollutants migrate mainly as dissolved solid, rather than as suspended solids along Imgok creek. The suspended solids in Imgok creek are very rich in Fe and Al, indicating that they mainly consist of the precipitates of present and past from the polluted water. Most of the dissolved components in the stream waters of Imgok creek removed from the aqueous phase by precipitation and dilution before reaching the East Sea, so that water quality of the downstreams of Imgok creek is very similar to that of unpolluted tributaries. It suggests that Imgok creek itself is now being severly polluted by the acid drainages from the abandoned coal mines, but the East Sea is relatively safe from the same pollution. The estuary and sea waters around the Goonseon estuary, which accepts Imgok creek water, certainly show no significant difference in chemical compositions from the mean oceanic water. The bottom sediments at the sampling sites of the sea waters also show no significant trend of their component variation, especially the variations of Fe, SO$_4$ and Al concentrations. These facts again supper that the acid mine drainage is not considerablly polluting the East Sea. However, the tributaries supplying the fresh water to the Imgok creek will be certainly polluted by the acid mine drainage as time passes and pollutants will have more chance to migrate in significant amount to the downstream area, which all can be a real threats to the East Sea on the pollution possibility. Therefore, it is suggested that urgently required are not only water quality and environmental improvement of the severely polluted Imgok creek but also preparation of the measures on the possible future pollution of the East Sea by the acid drainage from the abandoned coal mines in the area, while the East Sea is still not much affected by the pollution of the same kind.

  • PDF

Density Dependent Growth of Scapharca satowi in the West Coast of Korea (큰이랑피조개 Scapharca satowi의 양성 밀도별 성장)

  • 송홍인;박광재;조영록;박영제
    • Journal of Aquaculture
    • /
    • v.15 no.3
    • /
    • pp.145-155
    • /
    • 2002
  • Effect of density (30, 40, 65, 90 or 120/cage) of lantern and bottom cages on growth of the ark shell, Scapharca satowi was studied in the Korean west coast from April 2000 to October 2001, when the following range of environmental conditions prevailed : temperature : 4.2 -25.5 $^{\circ}C, salinity : 30.23-32.$15\textperthousand, dissolved oxygen : 5.12-7.16 $ml$/l, pH : 7.84-8.17, phosphate : 0.22-0.56 $\mu $M, dissolved inorganic nitrogen : 3.16-9.10 $\mu $M, suspended solid : 7.6-17.9 mg/l, chemical oxygen demand: 0.46-1.61 mg/l and chlorophyll-a : 0.92-5.93 $\mug/l. Daily growth rate of shell length ranged from 0.066 to 0.071 mm/day for the lantern net cages, and from 0.079 to 0.082 mm/day for the bottom cages. Total weight also ranged from 0.067 to 0.082 g/day in the lantern net cages, as against 0.099 to 0.114 g/day in the bottom cages. Hemoglobin content of S. satowi (55 mm shell length), which was about 3.9 g/dl during february, 2001, increased to 6.0 and 7.0 g/dl during October, 2001 in animals culture in the lantern and bottom cages, respectively. ANOVA test of the growth rate showed that the growth rate of S. satowi, was significantly dependent on rearing density and the tested culture methods (P < 0.0001). The daily growth rate of the shell length was more significantly correlated with water temperature; the growth rate of shell length and total weight showed a tendency decrease with decreasing temperature. In cages suspended at the bottom, not only the increase shell weight but also the meat obtainable from comparable sized S. satowi was greater. Survival decreased with increasing density and was optimal at the density of 30 individual/cage.

Spat Collection of the Ark shell, Scapharca in the West Coast of Korea (큰이랑피조개, Scapharca satowi의 자연채묘)

  • 송홍인;박광재;조영록;박영제
    • Journal of Aquaculture
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2002
  • During the periods from lily to October, 2000 in Hongseong and lucy to October, 2001 in Taean in the west coast of Korea, the following environmental conditions prevailed : water temperature : 22.0~26.817, salinity 27.23 ~30.80%, dissolved oxygen 4.12 ~6.26 ml/l, pH 7.89 ~8.09, phosphate 0.39 ~0.65 $\mu m$ , inorganic nitrogen 5.05~9.26 $\mu m$, suspended solid 5.4~20.8 mg/l and chemical oxygen demand 1.12~1.87 mg/l. The B-shaped veliger larvae of the Ark shell occurred in maximum number at $25^{\circ}C$ prevailing from mid-August at Hongseong and Taean. Full grown larvae reached maximum abundance from late August. To identify the effectiveness of the substratum for spat collection, raschel net were tested to Larval settlement. The most effective depth to collect the larvae in natural environment was the collectors suspended at 7~8 m depth. At these depths, about 49 to 94 spats were found on the collector (40$\times$50 cm), The growth of shell height (Y) to shell length (X), and total weight (W) to shell length (L) could be formulated as follows respectively: Hongseong: SH = 0.7168 SL -0.6466 ( $r^2$ = 0.9839), TW = $0.0001SL^{3.1705}$ ($r^2$ = 0.9882) Taean: SH = 0.736 SL -0.8824 ($r^2$ : 0.9899), TW : 0.00005 $SL^{3.3731}$ ($r^2$ : 0.9899)

Evaluation of Future Turbidity Water and Eutrophication in Chungju Lake by Climate Change Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 기후변화에 따른 탁수 및 부영양화 영향평가)

  • Ahn, So Ra;Ha, Rim;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.145-159
    • /
    • 2014
  • This study is to evaluate the future climate change impact on turbidity water and eutrophication for Chungju Lake by using CE-QUAL-W2 reservoir water quality model coupled with SWAT watershed model. The SWAT was calibrated and validated using 11 years (2000~2010) daily streamflow data at three locations and monthly stream water quality data at two locations. The CE-QUAL-W2 was calibrated and validated for 2 years (2008 and 2010) water temperature, suspended solid, total nitrogen, total phosphorus, and Chl-a. For the future assessment, the SWAT results were used as boundary conditions for CE-QUAL-W2 model run. To evaluate the future water quality variation in reservoir, the climate data predicted by MM5 RCM(Regional Climate Model) of Special Report on Emissions Scenarios (SRES) A1B for three periods (2013~2040, 2041~2070 and 2071~2100) were downscaled by Artificial Neural Networks method to consider Typhoon effect. The RCM temperature and precipitation outputs and historical records were used to generate pollutants loading from the watershed. By the future temperature increase, the lake water temperature showed $0.5^{\circ}C$ increase in shallow depth while $-0.9^{\circ}C$ in deep depth. The future annual maximum sediment concentration into the lake from the watershed showed 17% increase in wet years. The future lake residence time above 10 mg/L suspended solids (SS) showed increases of 6 and 17 days in wet and dry years respectively comparing with normal year. The SS occupying rate of the lake also showed increases of 24% and 26% in both wet and dry year respectively. In summary, the future lake turbidity showed longer lasting with high concentration comparing with present behavior. Under the future lake environment by the watershed and within lake, the future maximum Chl-a concentration showed increases of 19 % in wet year and 3% in dry year respectively.

A Seasonal Characteristic of Marine Environment and Fish Assemblage in the Coastal waters Jeju Island, Korea from 2012 to 2013 (제주도 연안 해양환경과 어류군집의 계절별 특성 (2012~2013년))

  • Ko, Jun-Cheol;Kim, Bo-Yeon;Kim, Maeng-Jin;Park, Sung-Eun;Kim, Jong-Bin;Cho, Hyung-Kee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.319-344
    • /
    • 2015
  • A seasonal characteristic of marine environment and fish assemblages in the coastal waters of Jeju Island were determined using samples collected by a trammel net in from 2012 to 2013. Annual mean temperature and salinity were $18.8^{\circ}C$, 33.7psu (2012) and $18.8^{\circ}C$, 33.8psu (2013) which shows stable water mass. nutrient concentrations represent that dissolved inorganic nitrogen (DIN) ranged from 0.030 to 0.217mg/L, dissolved inorganic phosphorus (DIP) from 0.002 to 0.010mg/L, and silicate ($SiO_2$) from 0.096 to 0.292mg/L. Chlorophyll a concentrations of phytoplankton ranged from 0.905 to $1.125{\mu}g/L$ were appeared the highest in summer and the lowest in winter. Suspended Solid(SS) concentrations ranged from 1.200 to 2.100mg/L (mean, 1.634mg/L) were appeared the highest in autumn and the lowest in spring. During the survey period, a total of 83 species (48 families and 12 orders) of fishes were identified, Perciformes and Scorpaeniformes accounted for 63.9% of the total number. The number of species was higher in summer than in winter, showing a peak in summer at 57 species and a low in winter at 47 species. The number of individuals and the biomass peaked in summer at 694 individuals and 151.9kg, and were the lowest in autumn at 466 individuals and 106.5kg. The diversity index, evenness index and richness index were appeared 2.92~3.14, 0.75~0.83 and 7.06~8.56 at each stations. the dominance index were appeared highest in spring and summer, were appeared the lowest in winter and autumn. The Filefish (Stephanolepis cirrhifer), Bluestriped angelfish (Chaetodontoplus septentrionalis), Marbled rockfish (Sebastiscus marmoratus), Rabbit fish (Siganus fuscescens), Blackfin sweeper (Pempheris japonica) were dominant species, which occurred abundantly during the entire survey period. The subtropical fishes were identified total of 41 species (49.4%) and the number of species was higher in summer at 29 (50.9%) species and a low in winter at 20 (42.6%) species. The dominant species of subtropical fishes were appeared Bluestriped angelfish, Blackfin sweeper, Rabbit fish, Scarbreast tuskfish (Choerodon azurio), Ballonfish (Diodon holocanthus), Flagfish (Goniistius zonatus), Blue-spotted boxfish (Ostracion immaculatus) in study sites. The subtropical fishes of species, individual and biomass showed significant correlation with environmental factors (Chlorophyll a, DIN, DIP, $SiO_2$) in almost all sampling sites.

Water Quality Characteristics of the Major Tributaries in Yeongsan and Sumjin River Basin using Statistical Analysis (통계분석을 이용한 영산강·섬진강수계 주요 유입지천의 수질 특성)

  • Park, Jinhwan;Jung, Jaewoon;Kim, Daeyoung;Kim, Kapsoon;Han, Sungwook;Kim, Hyunook;Lim, Byungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.2
    • /
    • pp.171-181
    • /
    • 2013
  • In this study, we report the water quality characteristics of pollutants for 4 major tributaries in the Yeongsan and Sumjin river basins using statistical analysis, such as regression equation and factor analysis. The flow rate and water qualtiy data collected from 4 sampling sites(Hwangryoung A, Jiseok A, Chooryeong A, Osu A) in the Yeonsan and Sumjin river basin during the past 3 years were analyzed for 11 parameters(flow rate, dissolved oxgen, pH, water temperature, electric conductivity, biochemical oxygen demand, chemical oxygen deman, total organic carbon, total nitorgen, total phosphorus, suspended solid). The results showed that the concentrations of BOD, COD, TOC, T-N, T-P in Hwangryoung A(HW) and Jiseok A(JS) of the Yeongsan river basin were decreased as the flow rate was increased. This means that rather than nonpoint soources, point sources affect water quality. In the cases of Chooryeong A(CR) and Osu A(OS) in the Sumjin river basin, howerever, nonpoint sources than point sources are an important factor that affects the water quality. Also, the factor analysis technique was employed to analyze principal component influencing on water quality. The results revealed that the first principal component in HW was correlated with EC, DO, T-N, water temperature. This "nitrogen influx according to seasonal pattern" factor may be interpreted. In JS, the first principal component was correlated with BOD, COD, TOC and is likely to represent "organic matter" processes. In CR and OS, BOD, COD, TOC, SS and T-P were significantly correlated and is considered as representing "Organic matter and adsorption of phosphorus on sediments influx". This study is expected to contribute to the effective pollution control/management of the surfac waters in the study sites.

Analysis of Specific Contaminated Status and Pollutant Loads Contribution Rate of the Tributaries in Gumho and Nam River Basin (금호강, 남강 중권역 지류·지천의 상세오염 현황 및 오염기여율 조사)

  • Na, Seungmin;Kwon, Heongak;Kim, Gyeong Hoon;Shin, Dongseok;Im, Tae Hyo
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.363-377
    • /
    • 2016
  • This study was investigated the pollutant load, contamination properties, pollution condition of the fine parts of tributary, the influence of Nakdong river watershed and etc. in the tributaries. The contaminated tributaries were that among the Kumho and Nam river or were too far from site of water quality monitoring stations, regularly. As a result, the water quality level was almost similar between Nam and Kumho River, except for certain parameter including TN(Total Nitrogen), Chl-a(Chlorophyll-a) and SS(Suspended Solid) in which Kumho river were 20~120%. The point discharge load(kg/day) and load density ($kg/day/km^2$) of tributaries were different the pollution level according to the flow-rate ($m^3/sec$) and stream influence area($km^2$), and the difference of these was observed highly at Nam river. Specific contamination investigation of tributaries in Nam and Kumho river watershed was conducted from two to nine points of the fine parts of tributaries depending on the confluence sites and shapes. This result observed high at the Dalseocheon and Uriyeongcheon, respectively. Beside, the pollutant load contribution rate of Nakdong watershed was high about 10% at the Dalseocheon and Uiryeongcheon. This was due to the differences of the environments about the industrial complex, metropolis residence property, agricultural cultivation, livestock pen and the downstream of non-point source.

Evaluating Efficiency of Coal Combustion Products (CCPs) and Polyacrylamide (PAM) for Mine Hazard Prevention and Revegetation in Coal Mine Area

  • Oh, Se Jin;Oh, Seung Min;Ok, Yong Sik;Kim, Sung Chul;Lee, Sang Hwan;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.525-532
    • /
    • 2014
  • Since mine wastes were merely dumped in the mine waste dump, they have produced acid mine drainage (AMD). Therefore, main objective of this study was to evaluate the effect of coal combustion products (CCPs) on heavy metal stabilization and detoxification for mine wastes. Total six treatments for incubation test were conducted depending on mixing method (completely mixing and layered). Also, lysimeter experiment was conducted to examine efficiency of polyacrylamide (PAM) on reduction of mine wastes erosion. Result of incubation test showed that concentrations of soluble aluminium (Al) and iron (Fe) in leachate decreased compared to control. The lowest soluble Al and Fe in leachate was observed in 50% mixed treatment (14.2 and $1.03mg\;kg^{-1}$ for Al and Fe respectively) compared to control treatment (253.0 for Al and $52.6mg\;kg^{-1}$ for Fe). The pH of mine wastes (MW) and leachate increased compared to control after mixing with CCPs and ordered as control (MW 6.4, leachate 6.3) < 10% (MW 7.7, leachate 7.1) < 20% (MW 9.0, leachate 7.8) < 30% (MW 9.5, leachate 8.3) < 40% (MW 9.9, leachate 8.5) < 50% (MW 10.5, leachate 8.6). Application of PAM, both in liquid and granular type, dramatically decreased the suspended solid (SS) concentration of CCPs treatments. Reduction of SS loss was ordered as MW70CR30L ($24.4mg\;L^{-1}$) > MW70CR30LPL ($6.7mg\;L^{-1}$) > NT ($3.1mg\;L^{-1}$) > MW70CR30M ($1.6mg\;L^{-1}$) > MW70CR30MPL ($1.1mg\;L^{-1}$) > MW70CR30PGM ($0.7mg\;L^{-1}$) > MW70CR30LPG ($0.5mg\;L^{-1}$) > MW70CR30MPG ($0.4mg\;L^{-1}$). Overall, application of CCPs can be environmental friendly and cost-effective way to remediate coal mine wastes contaminated with heavy metals. In addition, use of PAM could help to prevent the erosion coal mine wastes in mine waste disposal area.