• 제목/요약/키워드: Survival proteins

검색결과 406건 처리시간 0.028초

Therapeutic implication of autophagy in neurodegenerative diseases

  • Rahman, Md. Ataur;Rhim, Hyewhon
    • BMB Reports
    • /
    • 제50권7호
    • /
    • pp.345-354
    • /
    • 2017
  • Autophagy, a catabolic process necessary for the maintenance of intracellular homeostasis, has recently been the focus of numerous human diseases and conditions, such as aging, cancer, development, immunity, longevity, and neurodegeneration. However, the continued presence of autophagy is essential for cell survival and dysfunctional autophagy is thought to speed up the progression of neurodegeneration. The actual molecular mechanism behind the progression of dysfunctional autophagy is not yet fully understood. Emerging evidence suggests that basal autophagy is necessary for the removal of misfolded, aggregated proteins and damaged cellular organelles through lysosomal mediated degradation. Physiologically, neurodegenerative disorders are related to the accumulation of amyloid ${\beta}$ peptide and ${\alpha}-synuclein$ protein aggregation, as seen in patients with Alzheimer's disease and Parkinson's disease, respectively. Even though autophagy could impact several facets of human biology and disease, it generally functions as a clearance for toxic proteins in the brain, which contributes novel insight into the pathophysiological understanding of neurodegenerative disorders. In particular, several studies demonstrate that natural compounds or small molecule autophagy enhancer stimuli are essential in the clearance of amyloid ${\beta}$ and ${\alpha}-synuclein$ deposits. Therefore, this review briefly deliberates on the recent implications of autophagy in neurodegenerative disorder control, and emphasizes the opportunities and potential therapeutic application of applied autophagy.

84-kDa의 폐렴구균 열충격단백질 ClpL의 Cloning 및 면역특성에 관한 연구 (Cloning and Immunological Characterization of the 84-kDa Heat Shock Protein, ClpL, in Streptococcus pneumoniae)

  • 권혁영;김용환;최혜진;박연진;표석능;이동권
    • Biomolecules & Therapeutics
    • /
    • 제9권2호
    • /
    • pp.79-87
    • /
    • 2001
  • Heat shock proteins serve as chaperone by preventing the aggregation of denatured proteins and promote survival of pathogens in harsh environments. In this study, heat shock gene encoding a 84-kDa (p84) protein, which is one of the three major heat shock proteins in S. pneumoniae, was cloned and characterized. PCR with a forward primer derived from N-terminal amino acid sequence of the p84 and a reverse primer derived from the conserved second ATP-binding region of Clp family was used for amplification of the gene encoding the p84 and subsequently the PCR product was used for sequence determination. Sequence analysis of the p84 gene demonstrated that it is a member of ClpL. The deduced amino acid sequence of pneumococcal ClpL shows homology with other members of the Clp family, and particularly, even in variable leader region, with bovine Clp-like protein and L. lactis ClpL. S. pneumoniae clpL is the smallest clop member (701 amono acids) containing the two conserved ATP-binding regions, and hydrophilic N-terminal variable region of pneu-mococcal Clp ATPase is much shorter than any known Clp ATPases. Histidine tagged ClpL was overexpressed and purified from E. coli. Immunoblot analysis employing antisera raised against pneumococcus p84 demonstrated no cross-reactivity with Clp analog in Eschericha coli, Staphylococcus aureus and human HeLa cells. Preimmunization of mice with ClpL extended mice life partially but did not protect them from death.

  • PDF

Traditional and Novel Mechanisms of Heat Shock Protein 90 (HSP90) Inhibition in Cancer Chemotherapy Including HSP90 Cleavage

  • Park, Sangkyu;Park, Jeong-A;Jeon, Jae-Hyung;Lee, Younghee
    • Biomolecules & Therapeutics
    • /
    • 제27권5호
    • /
    • pp.423-434
    • /
    • 2019
  • HSP90 is a molecular chaperone that increases the stability of client proteins. Cancer cells show higher HSP90 expression than normal cells because many client proteins play an important role in the growth and survival of cancer cells. HSP90 inhibitors mainly bind to the ATP binding site of HSP90 and inhibit HSP90 activity, and these inhibitors can be distinguished as ansamycin and non-ansamycin depending on the structure. In addition, the histone deacetylase inhibitors inhibit the activity of HSP90 through acetylation of HSP90. These HSP90 inhibitors have undergone or are undergoing clinical trials for the treatment of cancer. On the other hand, recent studies have reported that various reagents induce cleavage of HSP90, resulting in reduced HSP90 client proteins and growth suppression in cancer cells. Cleavage of HSP90 can be divided into enzymatic cleavage and non-enzymatic cleavage. Therefore, reagents inducing cleavage of HSP90 can be classified as another class of HSP90 inhibitors. We discuss that the cleavage of HSP90 can be another mechanism in the cancer treatment by HSP90 inhibition.

Freeze Tolerance Enhanced by Antifreeze Protein in Plant

  • Hwang, Cheol-Ho;Park, Hyun-Woo;Min, Sung-Ran;Liu, Jang-Ryol
    • 식물조직배양학회지
    • /
    • 제27권4호
    • /
    • pp.339-343
    • /
    • 2000
  • When plants are exposed to subfreezing temperatures ice crystals are forming within extracelluar space in leaves. The growth of ice crystal is closely related to the degree of freezing injury. It was shown that an antifreeze protein binds to an ice nucleator through hydrogen bonds to prevent growth of ice crystal and also reduces freezing damage. The antifreeze proteins in plants are similar to PR proteins but only the PR proteins induced upon cold acclimation were shown to have dual functions in antifreezing as well as antifungal activities. Three of the genes encoded for CLP, GLP, and TLP were isolated from barley and Kentucky bluegrass based on amino acid sequence revealed after purification and low temperature-inducibility as shown in analysis of the protein. The deduced amino acid of the genes cloned showed a signal for secretion into extracellular space where the antifreezing activity sup-posed to work. The western analysis using the antisera raised against the antifreeze proteins showed a positive correlation between the amount of the protein and the level of freeze tolerance among different cultivars of barely. Besides it was revealed that TLP is responsible for a freeze tolerance induced by a treatment of trinexapac ethyl in Kentucky bluegrass. Analysis of an overwintering wild rice, Oryza rufipogon also showed that an acquisition of freeze tolerance relied on accumulation of the protein similar to CLP. The more direct evidence for the role of CLP in freeze tolerance was made with the analysis of the transgenic tobacco showing extracellular accumulation of CLP and enhanced freeze tolerance measured by amount of ion leakage and rate of photosynthetic electron transport upon freezing. These antifreeze proteins genes will be good candidates for transformation into crops such as lettuce and strawberry to develop into the new crops capable of freeze-storage and such as rose and grape to enhance a freeze tolerance for a safe survival during winter.

  • PDF

A proteomic approach reveals the differential protein expression in Drosophila melanogaster treated with red ginseng extract (Panax ginseng)

  • Liu, Qing-Xiu;Zhang, Wei;Wang, Jia;Hou, Wei;Wang, Ying-Ping
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.343-351
    • /
    • 2018
  • Background: Red ginseng is a popularly used traditional medicine with antiaging effects in Asian countries. The present study aimed to explore the changes in protein expression underlying the mechanisms of life span extension and antiaging caused by red ginseng extract (RGE) in Drosophila melanogaster. Methods: A proteomic approach of two-dimensional polyacrylamide gel electrophoresis (2-DE) was used to identify the differential abundance of possible target proteins of RGE in D. melanogaster. The reliability of the 2-DE results was confirmed via Western blotting to measure the expression levels of selected proteins. Proteins altered at the expression level after RGE treatment (1 mg/mL) were identified by matrix-assisted laser desorption/ionization-time of flight tandem mass spectrometry and by searching against the National Center for Biotechnology nonredundant and Uniprot protein databases. The differentially expressed proteins were analyzed using bioinformatics methods. Results: The average survival life span of D. melanogaster was significantly extended by 12.60% with RGE treatment (1 mg/mL) compared to untreated flies. This followed increased superoxide dismutase level and decreased methane dicarboxylic aldehyde content. Based on the searching strategy, 23 differentially expressed proteins were identified (16 up-regulated and 7 down-regulated) in the RGE-treated D. melanogaster. Transduction pathways were identified using the Kyoto Encyclopedia of Genes and Genomes database, and included the hippo and oxidative phosphorylation pathways that play important roles in life span extension and antiaging process of D. melanogaster. Conclusion: Treatment with RGE in D. melanogaster demonstrated that mechanisms of life span extension and antiaging are regulated by multiple factors and complicated signal pathways.

재조합 단백질 생산을 위한 소포체 신호전달 (Endoplasmic Reticulum Signaling for Recombinant-protein Production)

  • 구태원;윤은영;강석우;권기상;권오유
    • 생명과학회지
    • /
    • 제17권6호통권86호
    • /
    • pp.847-858
    • /
    • 2007
  • ER-Golgi 분비 경로를 통해서 정확한 구조를 가지면서 post-translational modification 과정을 거친 재조합 단백질의 발현을 최대화하는 것은 ER stress반응에 대한 연구의 중요한 계기가 된다. 세포가 스트레스를 받지 않는 상태라도 ER stress signaling은 재조합 단백질의 생산량을 제한하고 품질을 떨어뜨리는 여러 가지 조건을 만들게 된다. ER stress signaling을 막는 여러 가지 방법들이 제시되고 있으며 표 2는 이러한 방법들 중 일부를 나타내고 있다. 일반적으로는 pro-survival 경로에 관련되어 있는 인자를 촉진하고 pro-apoptosis에 관련되어 있는 인자를 억제하는 것들이다. 그러나 ER stress 반응은 매우 복잡하고 적응과 사멸 기작(adaptation and elimination mechanism)의 중간 역할을 하기 때문에 ER stress에 관련된 주요 인자를 산업적으로 응용하기 위해선 이들의 기능에 대해 보다 깊은 연구가 이루어져야 한다. 현재까지 재조합단백질의 생산량을 최대한으로 높이는 방법은 ER stress 반응이 생기지 않도록 fed-batch process를 개선하고 세포 사멸 기작을 조절하며 단백질의 glycosylation 처리를 하는 것이다.

Profiling of differentially expressed proteins between fresh and frozen-thawed Duroc boar semen using ProteinChip CM10

  • Yong-Min Kim;Sung-Woo Park;Mi-Jin Lee;Da-Yeon Jeon;Su-Jin Sa;Yong-Dae Jeong;Ha-Seung Seong;Jung-Woo Choi;Shinichi, Hochi;Eun-Seok Cho;Hak-Jae Chung
    • Journal of Animal Science and Technology
    • /
    • 제65권2호
    • /
    • pp.401-411
    • /
    • 2023
  • Many studies have been conducted to improve technology for semen cryopreservation in pigs. However, computer-assisted analysis of sperm motility and morphology is insufficient to predict the molecular function of frozen-thawed semen. More accurate expression patterns of boar sperm proteins may be derived using the isobaric tags for relative and absolute quantification (iTRAQ) technique. In this study, the iTRAQ-labeling system was coupled with liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis to identify differentially expressed CM10-fractionated proteins between fresh and frozen-thawed boar semen. A total of 76 protein types were identified to be differentially expressed, among which 9 and 67 proteins showed higher and lower expression in frozen-thawed than in fresh sperm samples, respectively. The classified functions of these proteins included oxidative phosphorylation, mitochondrial inner membrane and matrix, and pyruvate metabolic processes, which are involved in adenosine triphosphate (ATP) synthesis; and sperm flagellum and motile cilium, which are involved in sperm tail structure. These results suggest a possible network of biomarkers associated with survival after the cryopreservation of Duroc boar semen.

Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy

  • Bisan El Dakkak;Jalal Taneera;Waseem El-Huneidi;Eman Abu-Gharbieh;Rifat Hamoudi;Mohammad H. Semreen;Nelson C. Soares;Eman Y. Abu-Rish;Mahmoud Y. Alkawareek;Alaaldin M. Alkilany;Yasser Bustanji
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.267-280
    • /
    • 2024
  • Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.

Autophagy in neurodegeneration: two sides of the same coin

  • Lee, Jin-A
    • BMB Reports
    • /
    • 제42권6호
    • /
    • pp.324-330
    • /
    • 2009
  • Autophagy is a bulk lysosomal degradation process important in development, differentiation and cellular homeostasis in multiple organs. Interestingly, neuronal survival is highly dependent on autophagy due to its post-mitotic nature, polarized morphology and active protein trafficking. A growing body of evidence now suggests that alteration or dysfunction of autophagy causes accumulation of abnormal proteins and/or damaged organelles, thereby leading to neurodegenerative disease. Although autophagy generally prevents neuronal cell death, it plays a protective or detrimental role in neurodegenerative disease depending on the environment. In this review, the two sides of autophagy will be discussed in the context of several neurodegenerative diseases.

Phosphagen Kinases of Parasites: Unexplored Chemotherapeutic Targets

  • Jarilla, Blanca R.;Agatsuma, Takeshi
    • Parasites, Hosts and Diseases
    • /
    • 제48권4호
    • /
    • pp.281-284
    • /
    • 2010
  • Due to the possible emergence of resistance and safety concerns on certain treatments, development of new drugs against parasites is essential for the effective control and subsequent eradication of parasitic infections. Several drug targets have been identified which are either genes or proteins essential for the parasite survival and distinct from the hosts. These include the phosphagen kinases (PKs) which are enzymes that playa key role in maintenance of homeostasis in cells exhibiting high or variable rates of energy turnover by catalizing the reversible transfer of a phosphate between ATP and naturally occurring guanidine compounds. PKs have been identified in a number of important human and animal parasites and were also shown to be significant in survival and adaptation to stress conditions. The potential of parasite PKs as novel chemotherapeutic targets remains to be explored.