References
- Klionsky, D. J. (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931-937 https://doi.org/10.1038/nrm2245
- Mizushima, N., Levine, B., Cuervo, A. M. and Klionsky, D. J. (2008) Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075 https://doi.org/10.1038/nature06639
- Kroemer, G. and Levine, B. (2008) Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004-1010 https://doi.org/10.1038/nrm2529
- Scarlatti, F., Granata, R., Meijer, A. J. and Codogno, P. (2009) Does autophagy have a license to kill mammalian cells? Cell Death Differ. 16, 12-20 https://doi.org/10.1038/cdd.2008.101
- Sasaki, Y., Vohra, B. P., Baloh, R. H. and Milbrandt, J. (2009) Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J. Neurosci. 29, 6526-6534 https://doi.org/10.1523/JNEUROSCI.1429-09.2009
- Levine, B. and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463-477 https://doi.org/10.1016/S1534-5807(04)00099-1
- Rubinsztein, D. C., Cuervo, A. M., Ravikumar, B., Sarkar, S., Korolchuk, V., Kaushik, S. and Klionsky, D. J. (2009) In search of an 'autophagomometer'. Autophagy 5, [Epub ahead of print]
- Wang, C. W. and Klionsky, D. J. (2003) The molecular mechanism of autophagy. Mol. Med. 9, 65-76
- Kovacs, A. L., Gordon, P. B., Grotterod, E. M. and Seglen, P. O. (1998) Inhibition of hepatocytic autophagy by adenosine, adenosine analogs and AMP. Biol. Chem. 379, 1341-1347 https://doi.org/10.1515/bchm.1998.379.11.1341
- Eskelinen, E. L. (2008) New insights into the mechanisms of macroautophagy in mammalian cells. Int. Rev. Cell Mol. Biol. 266, 207-247 https://doi.org/10.1016/S1937-6448(07)66005-5
- Tooze, S. A. and Schiavo, G. (2008) Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Curr. Opin. Neurobiol. 18, 504-515 https://doi.org/10.1016/j.conb.2008.09.015
- Caughey, B. and Lansbury, P. T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267-298 https://doi.org/10.1146/annurev.neuro.26.010302.081142
- Mizushima, N. and Kuma, A. (2008) Autophagosomes in GFP-LC3 Transgenic Mice. Methods Mol. Biol. 445, 119-124 https://doi.org/10.1007/978-1-59745-157-4_7
- Tsvetkov, A. S., Mitra, S. and Finkbeiner, S. (2009) Protein turnover differences between neurons and other cells. Autophagy 5, [Epub ahead of print]
- Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H. and Mizushima, N. (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889 https://doi.org/10.1038/nature04724
- Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E. and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884 https://doi.org/10.1038/nature04723
- Nedelsky, N. B., Todd, P. K. and Taylor, J. P. (2008) Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim. Biophys. Acta. 1782, 691-699 https://doi.org/10.1016/j.bbadis.2008.10.002
- Korolchuk, V. I., Mansilla, A., Menzies, F. M. and Rubinsztein, D. C. (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell. 33, 517-527 https://doi.org/10.1016/j.molcel.2009.01.021
- Komatsu, M., Wang, Q. J., Holstein, G. R., Friedrich, V. L., Jr., Iwata, J., Kominami, E., Chait, B. T., Tanaka, K. and Yue, Z. (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc. Natl. Acad. Sci. U.S.A. 104, 14489-14494 https://doi.org/10.1073/pnas.0701311104
- Yue, Z., Wang, Q. J. and Komatsu, M. (2008) Neuronal autophagy: going the distance to the axon. Autophagy. 4, 94-96 https://doi.org/10.4161/auto.5202
- Yue, Z., Friedman, L., Komatsu, M. and Tanaka, K. (2009) The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim. Biophys. Acta. [Epub ahead of print]748
- Jaeger, P. A. and Wyss-Coray, T. (2009) All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Mol. Neurodegener. 4, 16 https://doi.org/10.1186/1750-1326-4-16
- Zhou, X., Babu, J. R., da Silva, S., Shu, Q., Graef, I. A., Oliver, T., Tomoda, T., Tani, T., Wooten, M. W. and Wang, F. (2007) Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc. Natl. Acad. Sci. U.S.A. 104, 5842-5847 https://doi.org/10.1073/pnas.0701402104
- McIntire, S. L., Garriga, G., White, J., Jacobson, D. and Horvitz, H. R. (1992) Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron 8, 307-322 https://doi.org/10.1016/0896-6273(92)90297-Q
- Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P. A., Small, S., Spencer, B., Rockenstein, E., Levine, B. and Wyss-Coray, T. (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118, 2190-2199
- Fimia, G. M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., Gruss, P., Piacentini, M., Chowdhury, K. and Cecconi, F. (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121-1125
- Lee, J. A., Beigneux, A., Ahmad, S. T., Young, S. G. and Gao, F. B. (2007) ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 17, 1561-1567 https://doi.org/10.1016/j.cub.2007.07.029
- Filimonenko, M., Stuffers, S., Raiborg, C., Yamamoto, A., Malerod, L., Fisher, E. M., Isaacs, A., Brech, A., Stenmark, H. and Simonsen, A. (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485-500 https://doi.org/10.1083/jcb.200702115
- Tamai, K., Toyoshima, M., Tanaka, N., Yamamoto, N., Owada, Y., Kiyonari, H., Murata, K., Ueno, Y., Ono, M., Shimosegawa, T., Yaegashi, N., Watanabe, M. and Sugamura, K. (2008) Loss of hrs in the central nervous system causes accumulation of ubiquitinated proteins and neurodegeneration. Am. J. Pathol. 173, 1806-1817 https://doi.org/10.2353/ajpath.2008.080684
- Cao, Y., Espinola, J. A., Fossale, E., Massey, A. C., Cuervo, A. M., MacDonald, M. E. and Cotman, S. L. (2006) Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J. Biol. Chem. 281, 20483-20493 https://doi.org/10.1074/jbc.M602180200
- Koike, M., Shibata, M., Waguri, S., Yoshimura, K., Tanida, I., Kominami, E., Gotow, T., Peters, C., von Figura, K., Mizushima, N., Saftig, P. and Uchiyama, Y. (2005) Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am. J. Pathol. 167, 1713-1728 https://doi.org/10.1016/S0002-9440(10)61253-9
- Shacka, J. J., Klocke, B. J., Young, C., Shibata, M., Olney, J. W., Uchiyama, Y., Saftig, P. and Roth, K. A. (2007) Cathepsin D deficiency induces persistent neurodegeneration in the absence of Bax-dependent apoptosis. J. Neurosci. 27, 2081-2090 https://doi.org/10.1523/JNEUROSCI.5577-06.2007
- Felbor, U., Kessler, B., Mothes, W., Goebel, H. H., Ploegh, H. L., Bronson, R. T. and Olsen, B. R. (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc. Natl. Acad. Sci. U.S.A. 99, 7883-7888 https://doi.org/10.1073/pnas.112632299
- Nixon, R. A. (2007) Autophagy, amyloidogenesis and Alzheimer disease. J. Cell Sci. 120, 4081-4091 https://doi.org/10.1242/jcs.019265
- Moreira, P. I., Siedlak, S. L., Wang, X., Santos, M. S., Oliveira, C. R., Tabaton, M., Nunomura, A., Szweda, L. I., Aliev, G., Smith, M. A., Zhu, X. and Perry, G. (2007) Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy. 3, 614-615 https://doi.org/10.4161/auto.4872
- Pan, T., Kondo, S., Le, W. and Jankovic, J. (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain 131, 1969-1978 https://doi.org/10.1093/brain/awm318
- Xilouri, M., Vogiatzi, T., Vekrellis, K., Park, D. and Stefanis, L. (2009) Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS ONE 4, e5515 https://doi.org/10.1371/journal.pone.0005515
- Kabuta, T., Setsuie, R., Mitsui, T., Kinugawa, A., Sakurai, M., Aoki, S., Uchida, K. and Wada, K. (2008) Aberrant molecular properties shared by familial Parkinson's disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Hum. Mol. Genet. 17, 1482-1496 https://doi.org/10.1093/hmg/ddn037
- Kegel, K. B., Kim, M., Sapp, E., McIntyre, C., Castano, J. G., Aronin, N. and DiFiglia, M. (2000) Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci. 20, 7268-7278
- Ravikumar, B., Vacher, C., Berger, Z., Davies, J. E., Luo, S., Oroz, L. G., Scaravilli, F., Easton, D. F., Duden, R., O'Kane, C. J. and Rubinsztein, D. C. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585-595 https://doi.org/10.1038/ng1362
- Sarkar, S., Perlstein, E. O., Imarisio, S., Pineau, S., Cordenier, A., Maglathlin, R. L., Webster, J. A., Lewis, T. A., O'Kane, C. J., Schreiber, S. L. and Rubinsztein, D. C. (2007) Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat. Chem. Biol. 3, 331-338 https://doi.org/10.1038/nchembio883
- Pandey, U. B., Nie, Z., Batlevi, Y., McCray, B. A., Ritson, G. P., Nedelsky, N. B., Schwartz, S. L., DiProspero, N. A., Knight, M. A., Schuldiner, O., Padmanabhan, R., Hild, M., Berry, D. L., Garza, D., Hubbert, C. C., Yao, T. P., Baehrecke, E. H. and Taylor, J. P. (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863 https://doi.org/10.1038/nature05853
- Vergarajauregui, S., Connelly, P. S., Daniels, M. P. and Puertollano, R. (2008) Autophagic dysfunction in mucolipidosis type IV patients. Hum. Mol. Genet. 17, 2723-2737 https://doi.org/10.1093/hmg/ddn174
- Raben, N., Takikita, S., Pittis, M. G., Bembi, B., Marie, S. K., Roberts, A., Page, L., Kishnani, P. S., Schoser, B. G., Chien, Y. H., Ralston, E., Nagaraju, K. and Plotz, P. H. (2007) Deconstructing Pompe disease by analyzing single muscle fibers: to see a world in a grain of sand. Autophagy. 3, 546-552 https://doi.org/10.4161/auto.4591
- Settembre, C., Arteaga-Solis, E., McKee, M. D., de Pablo, R., Al Awqati, Q., Ballabio, A. and Karsenty, G. (2008) Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes Dev. 22, 2645-2650 https://doi.org/10.1101/gad.1711308
- Ko, D. C., Milenkovic, L., Beier, S. M., Manuel, H., Buchanan, J. and Scott, M. P. (2005) Cell-autonomous death of cerebellar purkinje neurons with autophagy in Niemann-Pick type C disease. PLoS Genet. 1, 81-95 https://doi.org/10.1371/journal.pgen.0010081
- Samokhvalov, V., Scott, B. A. and Crowder, C. M. (2008) Autophagy protects against hypoxic injury in C. elegans. Autophagy. 4, 1034-1041 https://doi.org/10.4161/auto.6994
- Shacka, J. J., Lu, J., Xie, Z. L., Uchiyama, Y., Roth, K. A. and Zhang, J. (2007) Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci. Lett. 414, 57-60 https://doi.org/10.1016/j.neulet.2006.12.025
Cited by
- ESCRT & Co vol.102, pp.5, 2010, https://doi.org/10.1042/BC20090161
- Microglia change from a reactive to an age-like phenotype with the time in culture vol.8, 2014, https://doi.org/10.3389/fncel.2014.00152
- Transcriptional and post-transcriptional regulation of β-secretase vol.64, pp.12, 2012, https://doi.org/10.1002/iub.1099
- The effect of Benzothiazolone-2 on the expression of Metallothionein-3 in modulating Alzheimer's disease vol.7, pp.9, 2017, https://doi.org/10.1002/brb3.799
- Loss of Caspase-2-dependent Apoptosis Induces Autophagy after Mitochondrial Oxidative Stress in Primary Cultures of Young Adult Cortical Neurons vol.286, pp.10, 2011, https://doi.org/10.1074/jbc.M110.163824
- Lysine acetylation in the lumen of the ER: A novel and essential function under the control of the UPR vol.1833, pp.3, 2013, https://doi.org/10.1016/j.bbamcr.2012.12.004
- Mechanism and Regulation of Autophagy and Its Role in Neuronal Diseases vol.52, pp.3, 2015, https://doi.org/10.1007/s12035-014-8921-4
- Molecular characterization of Beclin 1 in rare minnow (Gobiocypris rarus) and its expression after waterborne cadmium exposure vol.42, pp.1, 2016, https://doi.org/10.1007/s10695-015-0122-1
- Identification of a small molecule that induces ATG5-and-cathepsin-l-dependent cell death and modulates polyglutamine toxicity vol.319, pp.12, 2013, https://doi.org/10.1016/j.yexcr.2013.03.019
- Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease vol.35, 2017, https://doi.org/10.1016/j.arr.2016.10.003
- Improved proteostasis in the secretory pathway rescues Alzheimer’s disease in the mouse vol.139, pp.3, 2016, https://doi.org/10.1093/brain/awv385
- Transcription factors and cognate signalling cascades in the regulation of autophagy vol.91, pp.2, 2016, https://doi.org/10.1111/brv.12177
- Insulin-Like Growth Factor-1 and Central Neurodegenerative Diseases vol.41, pp.2, 2012, https://doi.org/10.1016/j.ecl.2012.04.016
- The Functional Role of Prion Protein (PrPC) on Autophagy vol.2, pp.3, 2013, https://doi.org/10.3390/pathogens2030436
- HDAC6 at the Intersection of Neuroprotection and Neurodegeneration vol.13, pp.6, 2012, https://doi.org/10.1111/j.1600-0854.2012.01347.x
- Cooperative action of JNK and AKT/mTOR in 1-methyl-4-phenylpyridinium-induced autophagy of neuronal PC12 cells vol.90, pp.9, 2012, https://doi.org/10.1002/jnr.23066
- Hypoxia causes autophagic stress and derangement of metabolic adaptation in a cell model of amyotrophic lateral sclerosis vol.129, pp.3, 2014, https://doi.org/10.1111/jnc.12642
- Interleukin-6 vol.8, pp.4, 2012, https://doi.org/10.4161/auto.19226
- Oxidative stress impairs autophagic flux in prion protein-deficient hippocampal cells vol.8, pp.10, 2012, https://doi.org/10.4161/auto.21164
- UBQLN2/P62 cellular recycling pathways in amyotrophic lateral sclerosis and frontotemporal dementia vol.45, pp.2, 2012, https://doi.org/10.1002/mus.23278
- The autophagy-lysosomal pathway vol.85, pp.7, 2015, https://doi.org/10.1212/WNL.0000000000001860
- Molecular mechanisms of neurodegeneration mediated by dysfunctional subcellular organelles in transmissible spongiform encephalopathies vol.45, pp.6, 2013, https://doi.org/10.1093/abbs/gmt014
- Autophagy is the predominant process induced by arsenite in human lymphoblastoid cell lines vol.244, pp.3, 2010, https://doi.org/10.1016/j.taap.2010.01.019
- Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion vol.5, pp.1, 2015, https://doi.org/10.1038/srep14474
- Intracellular Ca2+ storage in health and disease: A dynamic equilibrium vol.47, pp.4, 2010, https://doi.org/10.1016/j.ceca.2010.02.001
- Autophagy Is Increased in Postmortem Brains of Persons With HIV-1-Associated Encephalitis vol.203, pp.11, 2011, https://doi.org/10.1093/infdis/jir163
- Autophagy in ageing and ageing-associated diseases vol.34, pp.5, 2013, https://doi.org/10.1038/aps.2012.188
- Autophagy in Pulmonary Diseases vol.74, pp.1, 2012, https://doi.org/10.1146/annurev-physiol-020911-153348
- Altered longevity-assurance activity of p53:p44 in the mouse causes memory loss, neurodegeneration and premature death vol.9, pp.2, 2010, https://doi.org/10.1111/j.1474-9726.2010.00547.x
- Friedreich Ataxia: Molecular Mechanisms, Redox Considerations, and Therapeutic Opportunities vol.13, pp.5, 2010, https://doi.org/10.1089/ars.2009.3015
- Dopamine D2 receptor signaling modulates mutant ataxin-1 S776 phosphorylation and aggregation vol.114, pp.3, 2010, https://doi.org/10.1111/j.1471-4159.2010.06791.x
- Common Features at the Start of the Neurodegeneration Cascade vol.10, pp.5, 2012, https://doi.org/10.1371/journal.pbio.1001335
- Autophagy and airway fibrosis: Is there a link? vol.6, 2017, https://doi.org/10.12688/f1000research.11236.1
- HIV-1 differentially modulates autophagy in neurons and astrocytes vol.285, 2015, https://doi.org/10.1016/j.jneuroim.2015.06.001
- Autophagy in cigarette smoke-induced chronic obstructive pulmonary disease vol.4, pp.5, 2010, https://doi.org/10.1586/ers.10.61
- Aβ1-42-mediated down-regulation of Uch-L1 is dependent on NF-κB activation and impaired BACE1 lysosomal degradation vol.11, pp.5, 2012, https://doi.org/10.1111/j.1474-9726.2012.00854.x
- The intricate mechanisms of neurodegeneration in prion diseases vol.17, pp.1, 2011, https://doi.org/10.1016/j.molmed.2010.09.001
- Neuronal synaptobrevinpromotes longevity in Drosophila photoreceptors vol.5, pp.6, 2012, https://doi.org/10.4161/cib.21434
- Basal autophagy is required for promoting dendritic terminal branching in Drosophila sensory neurons vol.13, pp.11, 2018, https://doi.org/10.1371/journal.pone.0206743
- Autophagy and airway fibrosis: Is there a link? vol.6, pp.2046-1402, 2018, https://doi.org/10.12688/f1000research.11236.2
- Mitophagy links oxidative stress conditions and neurodegenerative diseases vol.14, pp.5, 2019, https://doi.org/10.4103/1673-5374.249218