DOI QR코드

DOI QR Code

Autophagy in neurodegeneration: two sides of the same coin

  • Lee, Jin-A (College of Life Science and Nano Technology, Department of Biotechnology, Hannam University)
  • Published : 2009.06.30

Abstract

Autophagy is a bulk lysosomal degradation process important in development, differentiation and cellular homeostasis in multiple organs. Interestingly, neuronal survival is highly dependent on autophagy due to its post-mitotic nature, polarized morphology and active protein trafficking. A growing body of evidence now suggests that alteration or dysfunction of autophagy causes accumulation of abnormal proteins and/or damaged organelles, thereby leading to neurodegenerative disease. Although autophagy generally prevents neuronal cell death, it plays a protective or detrimental role in neurodegenerative disease depending on the environment. In this review, the two sides of autophagy will be discussed in the context of several neurodegenerative diseases.

Keywords

References

  1. Klionsky, D. J. (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931-937 https://doi.org/10.1038/nrm2245
  2. Mizushima, N., Levine, B., Cuervo, A. M. and Klionsky, D. J. (2008) Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075 https://doi.org/10.1038/nature06639
  3. Kroemer, G. and Levine, B. (2008) Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004-1010 https://doi.org/10.1038/nrm2529
  4. Scarlatti, F., Granata, R., Meijer, A. J. and Codogno, P. (2009) Does autophagy have a license to kill mammalian cells? Cell Death Differ. 16, 12-20 https://doi.org/10.1038/cdd.2008.101
  5. Sasaki, Y., Vohra, B. P., Baloh, R. H. and Milbrandt, J. (2009) Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J. Neurosci. 29, 6526-6534 https://doi.org/10.1523/JNEUROSCI.1429-09.2009
  6. Levine, B. and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463-477 https://doi.org/10.1016/S1534-5807(04)00099-1
  7. Rubinsztein, D. C., Cuervo, A. M., Ravikumar, B., Sarkar, S., Korolchuk, V., Kaushik, S. and Klionsky, D. J. (2009) In search of an 'autophagomometer'. Autophagy 5, [Epub ahead of print]
  8. Wang, C. W. and Klionsky, D. J. (2003) The molecular mechanism of autophagy. Mol. Med. 9, 65-76
  9. Kovacs, A. L., Gordon, P. B., Grotterod, E. M. and Seglen, P. O. (1998) Inhibition of hepatocytic autophagy by adenosine, adenosine analogs and AMP. Biol. Chem. 379, 1341-1347 https://doi.org/10.1515/bchm.1998.379.11.1341
  10. Eskelinen, E. L. (2008) New insights into the mechanisms of macroautophagy in mammalian cells. Int. Rev. Cell Mol. Biol. 266, 207-247 https://doi.org/10.1016/S1937-6448(07)66005-5
  11. Tooze, S. A. and Schiavo, G. (2008) Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Curr. Opin. Neurobiol. 18, 504-515 https://doi.org/10.1016/j.conb.2008.09.015
  12. Caughey, B. and Lansbury, P. T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267-298 https://doi.org/10.1146/annurev.neuro.26.010302.081142
  13. Mizushima, N. and Kuma, A. (2008) Autophagosomes in GFP-LC3 Transgenic Mice. Methods Mol. Biol. 445, 119-124 https://doi.org/10.1007/978-1-59745-157-4_7
  14. Tsvetkov, A. S., Mitra, S. and Finkbeiner, S. (2009) Protein turnover differences between neurons and other cells. Autophagy 5, [Epub ahead of print]
  15. Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H. and Mizushima, N. (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889 https://doi.org/10.1038/nature04724
  16. Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E. and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884 https://doi.org/10.1038/nature04723
  17. Nedelsky, N. B., Todd, P. K. and Taylor, J. P. (2008) Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim. Biophys. Acta. 1782, 691-699 https://doi.org/10.1016/j.bbadis.2008.10.002
  18. Korolchuk, V. I., Mansilla, A., Menzies, F. M. and Rubinsztein, D. C. (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell. 33, 517-527 https://doi.org/10.1016/j.molcel.2009.01.021
  19. Komatsu, M., Wang, Q. J., Holstein, G. R., Friedrich, V. L., Jr., Iwata, J., Kominami, E., Chait, B. T., Tanaka, K. and Yue, Z. (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc. Natl. Acad. Sci. U.S.A. 104, 14489-14494 https://doi.org/10.1073/pnas.0701311104
  20. Yue, Z., Wang, Q. J. and Komatsu, M. (2008) Neuronal autophagy: going the distance to the axon. Autophagy. 4, 94-96 https://doi.org/10.4161/auto.5202
  21. Yue, Z., Friedman, L., Komatsu, M. and Tanaka, K. (2009) The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim. Biophys. Acta. [Epub ahead of print]748
  22. Jaeger, P. A. and Wyss-Coray, T. (2009) All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Mol. Neurodegener. 4, 16 https://doi.org/10.1186/1750-1326-4-16
  23. Zhou, X., Babu, J. R., da Silva, S., Shu, Q., Graef, I. A., Oliver, T., Tomoda, T., Tani, T., Wooten, M. W. and Wang, F. (2007) Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc. Natl. Acad. Sci. U.S.A. 104, 5842-5847 https://doi.org/10.1073/pnas.0701402104
  24. McIntire, S. L., Garriga, G., White, J., Jacobson, D. and Horvitz, H. R. (1992) Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron 8, 307-322 https://doi.org/10.1016/0896-6273(92)90297-Q
  25. Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P. A., Small, S., Spencer, B., Rockenstein, E., Levine, B. and Wyss-Coray, T. (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118, 2190-2199
  26. Fimia, G. M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., Gruss, P., Piacentini, M., Chowdhury, K. and Cecconi, F. (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121-1125
  27. Lee, J. A., Beigneux, A., Ahmad, S. T., Young, S. G. and Gao, F. B. (2007) ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol. 17, 1561-1567 https://doi.org/10.1016/j.cub.2007.07.029
  28. Filimonenko, M., Stuffers, S., Raiborg, C., Yamamoto, A., Malerod, L., Fisher, E. M., Isaacs, A., Brech, A., Stenmark, H. and Simonsen, A. (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179, 485-500 https://doi.org/10.1083/jcb.200702115
  29. Tamai, K., Toyoshima, M., Tanaka, N., Yamamoto, N., Owada, Y., Kiyonari, H., Murata, K., Ueno, Y., Ono, M., Shimosegawa, T., Yaegashi, N., Watanabe, M. and Sugamura, K. (2008) Loss of hrs in the central nervous system causes accumulation of ubiquitinated proteins and neurodegeneration. Am. J. Pathol. 173, 1806-1817 https://doi.org/10.2353/ajpath.2008.080684
  30. Cao, Y., Espinola, J. A., Fossale, E., Massey, A. C., Cuervo, A. M., MacDonald, M. E. and Cotman, S. L. (2006) Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J. Biol. Chem. 281, 20483-20493 https://doi.org/10.1074/jbc.M602180200
  31. Koike, M., Shibata, M., Waguri, S., Yoshimura, K., Tanida, I., Kominami, E., Gotow, T., Peters, C., von Figura, K., Mizushima, N., Saftig, P. and Uchiyama, Y. (2005) Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am. J. Pathol. 167, 1713-1728 https://doi.org/10.1016/S0002-9440(10)61253-9
  32. Shacka, J. J., Klocke, B. J., Young, C., Shibata, M., Olney, J. W., Uchiyama, Y., Saftig, P. and Roth, K. A. (2007) Cathepsin D deficiency induces persistent neurodegeneration in the absence of Bax-dependent apoptosis. J. Neurosci. 27, 2081-2090 https://doi.org/10.1523/JNEUROSCI.5577-06.2007
  33. Felbor, U., Kessler, B., Mothes, W., Goebel, H. H., Ploegh, H. L., Bronson, R. T. and Olsen, B. R. (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc. Natl. Acad. Sci. U.S.A. 99, 7883-7888 https://doi.org/10.1073/pnas.112632299
  34. Nixon, R. A. (2007) Autophagy, amyloidogenesis and Alzheimer disease. J. Cell Sci. 120, 4081-4091 https://doi.org/10.1242/jcs.019265
  35. Moreira, P. I., Siedlak, S. L., Wang, X., Santos, M. S., Oliveira, C. R., Tabaton, M., Nunomura, A., Szweda, L. I., Aliev, G., Smith, M. A., Zhu, X. and Perry, G. (2007) Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy. 3, 614-615 https://doi.org/10.4161/auto.4872
  36. Pan, T., Kondo, S., Le, W. and Jankovic, J. (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain 131, 1969-1978 https://doi.org/10.1093/brain/awm318
  37. Xilouri, M., Vogiatzi, T., Vekrellis, K., Park, D. and Stefanis, L. (2009) Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS ONE 4, e5515 https://doi.org/10.1371/journal.pone.0005515
  38. Kabuta, T., Setsuie, R., Mitsui, T., Kinugawa, A., Sakurai, M., Aoki, S., Uchida, K. and Wada, K. (2008) Aberrant molecular properties shared by familial Parkinson's disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Hum. Mol. Genet. 17, 1482-1496 https://doi.org/10.1093/hmg/ddn037
  39. Kegel, K. B., Kim, M., Sapp, E., McIntyre, C., Castano, J. G., Aronin, N. and DiFiglia, M. (2000) Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci. 20, 7268-7278
  40. Ravikumar, B., Vacher, C., Berger, Z., Davies, J. E., Luo, S., Oroz, L. G., Scaravilli, F., Easton, D. F., Duden, R., O'Kane, C. J. and Rubinsztein, D. C. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585-595 https://doi.org/10.1038/ng1362
  41. Sarkar, S., Perlstein, E. O., Imarisio, S., Pineau, S., Cordenier, A., Maglathlin, R. L., Webster, J. A., Lewis, T. A., O'Kane, C. J., Schreiber, S. L. and Rubinsztein, D. C. (2007) Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat. Chem. Biol. 3, 331-338 https://doi.org/10.1038/nchembio883
  42. Pandey, U. B., Nie, Z., Batlevi, Y., McCray, B. A., Ritson, G. P., Nedelsky, N. B., Schwartz, S. L., DiProspero, N. A., Knight, M. A., Schuldiner, O., Padmanabhan, R., Hild, M., Berry, D. L., Garza, D., Hubbert, C. C., Yao, T. P., Baehrecke, E. H. and Taylor, J. P. (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863 https://doi.org/10.1038/nature05853
  43. Vergarajauregui, S., Connelly, P. S., Daniels, M. P. and Puertollano, R. (2008) Autophagic dysfunction in mucolipidosis type IV patients. Hum. Mol. Genet. 17, 2723-2737 https://doi.org/10.1093/hmg/ddn174
  44. Raben, N., Takikita, S., Pittis, M. G., Bembi, B., Marie, S. K., Roberts, A., Page, L., Kishnani, P. S., Schoser, B. G., Chien, Y. H., Ralston, E., Nagaraju, K. and Plotz, P. H. (2007) Deconstructing Pompe disease by analyzing single muscle fibers: to see a world in a grain of sand. Autophagy. 3, 546-552 https://doi.org/10.4161/auto.4591
  45. Settembre, C., Arteaga-Solis, E., McKee, M. D., de Pablo, R., Al Awqati, Q., Ballabio, A. and Karsenty, G. (2008) Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes Dev. 22, 2645-2650 https://doi.org/10.1101/gad.1711308
  46. Ko, D. C., Milenkovic, L., Beier, S. M., Manuel, H., Buchanan, J. and Scott, M. P. (2005) Cell-autonomous death of cerebellar purkinje neurons with autophagy in Niemann-Pick type C disease. PLoS Genet. 1, 81-95 https://doi.org/10.1371/journal.pgen.0010081
  47. Samokhvalov, V., Scott, B. A. and Crowder, C. M. (2008) Autophagy protects against hypoxic injury in C. elegans. Autophagy. 4, 1034-1041 https://doi.org/10.4161/auto.6994
  48. Shacka, J. J., Lu, J., Xie, Z. L., Uchiyama, Y., Roth, K. A. and Zhang, J. (2007) Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci. Lett. 414, 57-60 https://doi.org/10.1016/j.neulet.2006.12.025

Cited by

  1. ESCRT & Co vol.102, pp.5, 2010, https://doi.org/10.1042/BC20090161
  2. Microglia change from a reactive to an age-like phenotype with the time in culture vol.8, 2014, https://doi.org/10.3389/fncel.2014.00152
  3. Transcriptional and post-transcriptional regulation of β-secretase vol.64, pp.12, 2012, https://doi.org/10.1002/iub.1099
  4. The effect of Benzothiazolone-2 on the expression of Metallothionein-3 in modulating Alzheimer's disease vol.7, pp.9, 2017, https://doi.org/10.1002/brb3.799
  5. Loss of Caspase-2-dependent Apoptosis Induces Autophagy after Mitochondrial Oxidative Stress in Primary Cultures of Young Adult Cortical Neurons vol.286, pp.10, 2011, https://doi.org/10.1074/jbc.M110.163824
  6. Lysine acetylation in the lumen of the ER: A novel and essential function under the control of the UPR vol.1833, pp.3, 2013, https://doi.org/10.1016/j.bbamcr.2012.12.004
  7. Mechanism and Regulation of Autophagy and Its Role in Neuronal Diseases vol.52, pp.3, 2015, https://doi.org/10.1007/s12035-014-8921-4
  8. Molecular characterization of Beclin 1 in rare minnow (Gobiocypris rarus) and its expression after waterborne cadmium exposure vol.42, pp.1, 2016, https://doi.org/10.1007/s10695-015-0122-1
  9. Identification of a small molecule that induces ATG5-and-cathepsin-l-dependent cell death and modulates polyglutamine toxicity vol.319, pp.12, 2013, https://doi.org/10.1016/j.yexcr.2013.03.019
  10. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease vol.35, 2017, https://doi.org/10.1016/j.arr.2016.10.003
  11. Improved proteostasis in the secretory pathway rescues Alzheimer’s disease in the mouse vol.139, pp.3, 2016, https://doi.org/10.1093/brain/awv385
  12. Transcription factors and cognate signalling cascades in the regulation of autophagy vol.91, pp.2, 2016, https://doi.org/10.1111/brv.12177
  13. Insulin-Like Growth Factor-1 and Central Neurodegenerative Diseases vol.41, pp.2, 2012, https://doi.org/10.1016/j.ecl.2012.04.016
  14. The Functional Role of Prion Protein (PrPC) on Autophagy vol.2, pp.3, 2013, https://doi.org/10.3390/pathogens2030436
  15. HDAC6 at the Intersection of Neuroprotection and Neurodegeneration vol.13, pp.6, 2012, https://doi.org/10.1111/j.1600-0854.2012.01347.x
  16. Cooperative action of JNK and AKT/mTOR in 1-methyl-4-phenylpyridinium-induced autophagy of neuronal PC12 cells vol.90, pp.9, 2012, https://doi.org/10.1002/jnr.23066
  17. Hypoxia causes autophagic stress and derangement of metabolic adaptation in a cell model of amyotrophic lateral sclerosis vol.129, pp.3, 2014, https://doi.org/10.1111/jnc.12642
  18. Interleukin-6 vol.8, pp.4, 2012, https://doi.org/10.4161/auto.19226
  19. Oxidative stress impairs autophagic flux in prion protein-deficient hippocampal cells vol.8, pp.10, 2012, https://doi.org/10.4161/auto.21164
  20. UBQLN2/P62 cellular recycling pathways in amyotrophic lateral sclerosis and frontotemporal dementia vol.45, pp.2, 2012, https://doi.org/10.1002/mus.23278
  21. The autophagy-lysosomal pathway vol.85, pp.7, 2015, https://doi.org/10.1212/WNL.0000000000001860
  22. Molecular mechanisms of neurodegeneration mediated by dysfunctional subcellular organelles in transmissible spongiform encephalopathies vol.45, pp.6, 2013, https://doi.org/10.1093/abbs/gmt014
  23. Autophagy is the predominant process induced by arsenite in human lymphoblastoid cell lines vol.244, pp.3, 2010, https://doi.org/10.1016/j.taap.2010.01.019
  24. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion vol.5, pp.1, 2015, https://doi.org/10.1038/srep14474
  25. Intracellular Ca2+ storage in health and disease: A dynamic equilibrium vol.47, pp.4, 2010, https://doi.org/10.1016/j.ceca.2010.02.001
  26. Autophagy Is Increased in Postmortem Brains of Persons With HIV-1-Associated Encephalitis vol.203, pp.11, 2011, https://doi.org/10.1093/infdis/jir163
  27. Autophagy in ageing and ageing-associated diseases vol.34, pp.5, 2013, https://doi.org/10.1038/aps.2012.188
  28. Autophagy in Pulmonary Diseases vol.74, pp.1, 2012, https://doi.org/10.1146/annurev-physiol-020911-153348
  29. Altered longevity-assurance activity of p53:p44 in the mouse causes memory loss, neurodegeneration and premature death vol.9, pp.2, 2010, https://doi.org/10.1111/j.1474-9726.2010.00547.x
  30. Friedreich Ataxia: Molecular Mechanisms, Redox Considerations, and Therapeutic Opportunities vol.13, pp.5, 2010, https://doi.org/10.1089/ars.2009.3015
  31. Dopamine D2 receptor signaling modulates mutant ataxin-1 S776 phosphorylation and aggregation vol.114, pp.3, 2010, https://doi.org/10.1111/j.1471-4159.2010.06791.x
  32. Common Features at the Start of the Neurodegeneration Cascade vol.10, pp.5, 2012, https://doi.org/10.1371/journal.pbio.1001335
  33. Autophagy and airway fibrosis: Is there a link? vol.6, 2017, https://doi.org/10.12688/f1000research.11236.1
  34. HIV-1 differentially modulates autophagy in neurons and astrocytes vol.285, 2015, https://doi.org/10.1016/j.jneuroim.2015.06.001
  35. Autophagy in cigarette smoke-induced chronic obstructive pulmonary disease vol.4, pp.5, 2010, https://doi.org/10.1586/ers.10.61
  36. Aβ1-42-mediated down-regulation of Uch-L1 is dependent on NF-κB activation and impaired BACE1 lysosomal degradation vol.11, pp.5, 2012, https://doi.org/10.1111/j.1474-9726.2012.00854.x
  37. The intricate mechanisms of neurodegeneration in prion diseases vol.17, pp.1, 2011, https://doi.org/10.1016/j.molmed.2010.09.001
  38. Neuronal synaptobrevinpromotes longevity in Drosophila photoreceptors vol.5, pp.6, 2012, https://doi.org/10.4161/cib.21434
  39. Basal autophagy is required for promoting dendritic terminal branching in Drosophila sensory neurons vol.13, pp.11, 2018, https://doi.org/10.1371/journal.pone.0206743
  40. Autophagy and airway fibrosis: Is there a link? vol.6, pp.2046-1402, 2018, https://doi.org/10.12688/f1000research.11236.2
  41. Mitophagy links oxidative stress conditions and neurodegenerative diseases vol.14, pp.5, 2019, https://doi.org/10.4103/1673-5374.249218