• 제목/요약/키워드: Survival proteins

검색결과 406건 처리시간 0.028초

폭약 2,4,6-Trinitrotoluene에 노출된 분해세균 Stenotrophomonas sp. OK-5의 세포반응 (Cellular Responses of the TNT-degrading Bacterium, Stenotrophomonas sp. OK-5 to Explosive 2,4,6-Trinitrotoluene (TNT))

  • 장효원;송승열;김승일;강형일;오계헌*
    • 미생물학회지
    • /
    • 제38권4호
    • /
    • pp.247-253
    • /
    • 2002
  • 환경오염원으로서 폭약 2,4,6-trinitrotoluene (TNT)에 대한 TNT 분해세균 Stenotrophomonas sp. OK-5의 세포반응에 대하여 조사하였다. 아치사조건의 TNT농도와 노출시간에 따른 균주 OK-5의 생존율을 분석한 결과, 이 세균의 생존율은 스트레스 충격 단백질의 생성과 비례하였다. 총세포 지방산 조성분석에서 균주 OK-5는 tryp-ticase soy agar에서 자랄 때보다 TNT 배지에서 자랄 때 여러 가지 종류의 지방산이 생성되거나 사라지는 것이 밝혀졌다. 주사전자현미경하에서 TNT에 노출된 세포는 쭈글쭈글하고 불규칙적인 간상형으로 나타났다. Anti-DnaK와 anti-GroEL을 이용하여 SDS-PAGE와 Western blot을 통한 분석으로 균주 OK-5는 70 kDa DanK와 60 kDa GroEL을 포함하는 몇가지 스트레스충격단백질을 생성하는 것으로 밝혀졌다. TNT에 노출된 OK-5 배양에서 수용성 단백질 분획에 대하여 2-D PAGE를 실시하였으며, pH 3에서 pH 10의 범위에서 약 300여 개 spot들이 silver로 염색된 gel상에서 관찰되었다. 이들 가운데 TNT의 반응으로 현저하게 유도되고 발현된 10개의 spot들을 확인하였으며, 2개의 단백질, spot #1과 spot #10에 대한 내부아미노산 서열을 ESI-Q TOF로 분석한 결과, Xylella fastidiosa의 DnaK protein XF2340와 Mesorhizobium loti의 스트레스 유도단백질로 각각 밝혀졌다.

Epigallocatechin Gallate (EGCG)에 노출된 용혈성 Bacillus cereus MH-2의 세포 반응 및 프로테옴 분석 (Cellular responses and proteomic analysis of hemolytic Bacillus cereus MH-2 exposed to epigallocatechin gallate (EGCG))

  • 김동민;박상국;오계헌
    • 미생물학회지
    • /
    • 제52권3호
    • /
    • pp.260-268
    • /
    • 2016
  • 본 연구의 목적은 시중에 판매되고 있는 쌈장에서 용혈성을 가지는 Bacillus cereus MH-2를 분리하여, EGCG 노출에 따른 MH-2 균주의 세포 반응과 프로테옴 분석을 위해 수행되었다. 다양한 농도의 EGCG에 노출된 MH-2 균주는 노출시간이 증가함에 따라 생존률은 점차 감소함을 보였다. MH-2 균주의 alginate 생성량은 EGCG의 농도가 증가함에 따라 감소하였으며, 특정 EGCG 농도에서 노출시간이 진행됨에 따라 그 생성량은 증가하는 것으로 나타났다. SDS-PAGE 및 anti-DnaK와 anti-GroEL의 단일항체를 이용한 Western blot 통한 분석으로, 두 가지 스트레스 충격단백질인 70 kDa의 DnaK와 60 kDa의 GroEL의 발현은 대수생장기의 배양에서 EGCG의 농도에 비례하여 감소하는 것을 확인하였다. EGCG에 노출된 세균의 세포 외부형태 변화를 주사전자현미경을 이용하여 관찰한 결과, 세포 표면의 돌출부 생성과 함께 세포의 뭉그러짐이 관찰되었다. EGCG에 노출된 Bacillus cereus MH-2 배양의 수용성 단백질 부분에 대한 2-DE에서 20개의 단백질 스팟이 EGCG 노출에 의해 크게 변화하는 것이 확인되었다. 장독소(hemolysin BL lytic component L1, hemolysin BL-binding protein), chaperon (DnaK, GroEL), 세포방어요소(peptidase M4 family proteins), 에너지 및 물질대사 등에 수반되는 이들 단백질은 MALDI-TOF를 사용한 peptide mass fingerprinting에 의해 동정되었다. 이들 결과는 B. cereus MH-2에 대한 EGCG-유도 스트레스와 세포독성의 기작을 이해하는데 중요한 단서를 제공할 것이다.

Substantial Protective Immunity Conferred by a Combination of Brucella abortus Recombinant Proteins against Brucella abortus 544 Infection in BALB/c Mice

  • Arayan, Lauren Togonon;Huy, Tran Xuan Ngoc;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Son, Vu Hai;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.330-338
    • /
    • 2019
  • Chronic infection with intracellular Brucella abortus (B. abortus) in livestock remains as a major problem worldwide. Thus, the search for an ideal vaccine is still ongoing. In this study, we evaluated the protective efficacy of a combination of B. abortus recombinant proteins; superoxide dismutase (rSodC), riboflavin synthase subunit beta (rRibH), nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12) and malate dehydrogenase (rMDH), cloned and expressed into a pMal vector system and $DH5{\alpha}$, respectively, and further purified and applied intraperitoneally into BALB/c mice. After first immunization and two boosters, mice were infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544. Spleens were harvested and bacterial loads were evaluated at two weeks post-infection. Results revealed that this combination showed significant reduction in bacterial colonization in the spleen with a log protection unit of 1.31, which is comparable to the average protection conferred by the widely used live attenuated vaccine RB51. Cytokine analysis exhibited enhancement of cell-mediated immune response as IFN-${\gamma}$ is significantly elevated while IL-10, which is considered beneficial to the pathogen's survival, was reduced compared to control group. Furthermore, both titers of IgG1 and IgG2a were significantly elevated at three and four-week time points from first immunization. In summary, our in vivo data revealed that vaccination with a combination of five different proteins conferred a heightened host response to Brucella infection through cell-mediated immunity which is desirable in the control of intracellular pathogens. Thus, this combination might be considered for further improvement as a potential candidate vaccine against Brucella infection.

제1기 비소세포폐암에서 APT1 발현의 임상적 의미 (The Clinical and Pathologic Features according to Expression of Acyl Protein Thioesterase-1 (APT1) in Stage I Non-small Cell Lung Cancer)

  • 신정아;이창률;변민광;장윤수;김세규;장준;안철민;김형중
    • Tuberculosis and Respiratory Diseases
    • /
    • 제68권4호
    • /
    • pp.212-217
    • /
    • 2010
  • Background: Acyl protein thioesterase-1 (APT1) is a cytosolic protein that may function in the depalmitoylation of numerous proteins, including the Ras family. However, the clinical role of depalmitoyl thioesterase in human cancer is not known. We evaluated the APT1 expression in lung cancer tissue and its clinicopathological findings according APT1 expression pattern. Methods: APT1 expression was examined by immunohistochemistry in the tumor tissue from 79 patients, who had undergone curative surgical removal of the primary lesion; all patients had been diagnosed with stage I non-small cell lung cancer between 1993 and 2004, at Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. Results: The APT1 expression was seen in 50 out of 79 (63.3%) cases. The positive APT1 expression was significantly related with histologic subtype and T stage, but was not influenced by differentiation. The positive APT1 expression was not significantly related to patient age, gender, or smoking history. The median follow-up duration was 10.0 years; the 5-year survival rate was 71.0%. The positive APT1 expression group showed significantly worse overall survival and worse disease-free survival without statistical significance. Conclusion: We conclude that positive APT1 expression in stage I lung cancer after surgery is closely associated with overall survival. To evaluate APT1 as a prognostic marker in lung cancer, comprehensive studies on advanced stage cases are needed.

SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells

  • Ryu, Ji-Yoon;Oh, Jiyoung;Kim, Su-Min;Kim, Won-Gi;Jeong, Hana;Ahn, Shin-Ae;Kim, Seol-Hee;Jang, Ji-Young;Yoo, Byong Chul;Kim, Chul Woo;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제55권4호
    • /
    • pp.198-203
    • /
    • 2022
  • As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels.

Effect of D-glucose feeding on mortality induced by sepsis

  • Kim, Sung-Su;Sim, Yun-Beom;Park, Soo-Hyun;Lee, Jae-Ryeong;Sharma, Naveen;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.83-89
    • /
    • 2016
  • Sepsis is the life-threatening response to infection which can lead to tissue damage, organ failure, and death. In the current study, the effect of orally administered D-glucose on the mortality and the blood glucose level induced by D-Galactosamine (GaLN)/lipopolysaccharide (LPS)-induced sepsis was examined in ICR mice. After various amounts of D-glucose (from 1 to 8 g/kg) were orally fed, sepsis was induced by injecting intraperitoneally (i.p.) the mixture of GaLN /LPS. Oral pre-treatment with D-glucose dose-dependently increased the blood glucose level and caused a reduction of sepsis-induced mortality. The oral post-treatment with D-glucose (8 g/kg) up to 3 h caused an elevation of the blood glucose level and protected the mortality observed in sepsis model. However, D-glucose post-treated at 6, 9, or 12 h after sepsis induction did not affect the mortality and the blood glucose level induced by sepsis. Furthermore, the intrathecal (i.t.) pretreatment once with pertussis toxin (PTX; $0.1{\mu}g/5ml$) for 6 days caused a reduction of D-glucose-induced protection of mortality and hyperglycemia. Furthermore, once the hypoglycemic state is continued up to 6 h after sepsis initiated, sepsis-induced mortality could not be reversed by D-glucose fed orally. Based on these findings, it is assumed that the hypoglycemic duration between 3 and 6 h after the sepsis induction may be a critical time of period for the survival. D-glucose-induced protective effect against sepsis-induced mortality appears to be mediated via activating PTX-sensitive G-proteins in the spinal cord. Finally, the production of hyperglycemic state may be critical for the survival against the sepsis-induced mortality.

The Vomeronasal Organ and Adjacent Glands Express Components of Signaling Cascades Found in Sensory Neurons in the Main Olfactory System

  • Lee, Sang Jin;Mammen, Alex;Kim, Esther J.;Kim, So Yeun;Park, Yun Ju;Park, Mira;Han, Hyung Soo;Bae, Yong-Chul;Ronnett, Gabriele V.;Moon, Cheil
    • Molecules and Cells
    • /
    • 제26권5호
    • /
    • pp.503-513
    • /
    • 2008
  • The vomeronasal organ (VNO) is a sensory organ that influences social and/or reproductive behavior and, in many cases, the survival of an organism. The VNO is believed to mediate responses to pheromones; however, many mechanisms of signal transduction in the VNO remain elusive. Here, we examined the expression of proteins involved in signal transduction that are found in the main olfactory system in the VNO. The localization of many signaling molecules in the VNO is quite different from those in the main olfactory system, suggesting differences in signal transduction mechanisms between these two chemosensory organs. Various signaling molecules are expressed in distinct areas of VNO sensory epithelium. Interestingly, we found the expressions of groups of these signaling molecules in glandular tissues adjacent to VNO, supporting the physiological significance of these glandular tissues. Our finding of high expression of signaling proteins in glandular tissues suggests that neurohumoral factors influence glandular tissues to modulate signaling cascades that in turn alter the responses of the VNO to hormonal status.

Characterization of Aspergillus niger Mutants Deficient of a Protease

  • Chung, Hea-Jong;Park, Seung-Moon;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • 제30권3호
    • /
    • pp.160-165
    • /
    • 2002
  • Aspergillus niger has been used as a host to express many heterologous proteins. It has been known that the presence of an- abundant protease is a limiting factor to express a heterologous protein. The protease deficient mutant of A. niger was obtained using UV-irradiation. A total of $1{\times}10^5$ spores were irradiated with $10{\sim}20%$ survival dose of UV, 600 $J/m^2$ at 280 nm, and the resulting spores were screened on the casein-gelatin plates. Ten putative protease deficient mutants showing the reduced halo area around colonies were further analyzed to differentiate the protease deficient mutant from other mutant types. Among ten putative mutants, seven mutants showed significant growth defect on nutrient rich medium and two mutants appeared to be the secretory mutants, which resulted in the impaired secretion of extracellular proteins including proteases. A mutant $pro^--20$ showed reduced halo zone without any notable changes in growth rate. In addition, the starchdegrading and glucose oxidase activities in the culture filtrate of $pro^--20$ mutant showed the similar range as that of the parental strain, which suggested that the $pro^--20$ mutant ought to be the protease deficient mutant rather than a secretory mutant. The reduced proteolytic activity of the $pro^--20$ was demonstrated using SDS-fibrin zymography gel. The reduced extracellular proteolysis was quantified by casein degradation assay and, comparing with the parental strain, less than 30% residual extracellular protease activity was detected in the culture filtrate of the $pro^--20$ mutant. The bio-activity of an exogenously supplemented hGM-CSF(human Granulocyte-Macrophage Colony Stimulating Factor) in the culture filtrate of $pro^--20$ mutant was detected until eight times more diluted preparations than that of the parental strain.

Genistein from Vigna angularis Extends Lifespan in Caenorhabditis elegans

  • Lee, Eun Byeol;Ahn, Dalrae;Kim, Ban Ji;Lee, So Yeon;Seo, Hyun Won;Cha, Youn-Soo;Jeon, Hoon;Eun, Jae Soon;Cha, Dong Seok;Kim, Dae Keun
    • Biomolecules & Therapeutics
    • /
    • 제23권1호
    • /
    • pp.77-83
    • /
    • 2015
  • The seed of Vigna angularis has long been cultivated as a food or a folk medicine in East Asia. Genistein (4',5,7-trihydroxyisoflavone), a dietary phytoestrogen present in this plant, has been known to possess various biological properties. In this study, we investigated the possible lifespan-extending effects of genistein using Caenorhabditis elegans model system. We found that the lifespan of nematode was significantly prolonged in the presence of genistein under normal culture condition. In addition, genistein elevated the survival rate of nematode against stressful environment including heat and oxidative conditions. Further studies demonstrated that genistein-mediated increased stress tolerance of nematode could be attributed to enhanced expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). Moreover, we failed to find genistein-induced significant change in aging-related factors including reproduction, food intake, and growth, indicating genistein exerts longevity activity independent of affecting these factors. Genistein treatment also led to an up-regulation of locomotory ability of aged nematode, suggesting genistein affects healthspan as well as lifespan of nematode. Our results represent that genistein has beneficial effects on the lifespan of C. elegans under both of normal and stress condition via elevating expressions of stress resistance proteins.

Oxidative Stress and Antioxidants in Disease and Cancer: A Review

  • Gupta, Rakesh Kumar;Patel, Amit Kumar;Shah, Niranjan;Choudhary, Arun Kumar;Jha, Uday Kant;Yadav, Uday Chandra;Gupta, Pavan Kumar;Pakuwal, Uttam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4405-4409
    • /
    • 2014
  • Reactive oxygen species (ROS), highly reactive molecules, are produced by living organisms as a result of normal cellular metabolism and environmental factors, and can damage nucleic acids and proteins, thereby altering their functions. The human body has several mechanisms to counteract oxidative stress by producing antioxidants. A shift in the balance between oxidants and antioxidants in favor of oxidants is termed as "oxidative stress". Paradoxically, there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases and PI3 kinase), ROS homeostasis, and antioxidant gene regulation (Ref-1 and Nrf-2). This review also deals with classification as well as mechanisms of formation of free radicals, examining their beneficial and deleterious effects on cellular activities and focusing on the potential role of antioxidants in preventing and repairing damage caused by oxidative stress. A discussion of the role of phytochemical antioxidants in oxidative stress, disease and the epigenome is included.