• 제목/요약/키워드: Survivability of naval ships

검색결과 37건 처리시간 0.031초

Feasibility study of corner reflector for radar countermeasures and deception for conventional forces

  • Kang, Hee-Jin;Yang, Hyang-Kweon;Jo, Min-Chul;Kim, Kook-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권2호
    • /
    • pp.171-175
    • /
    • 2017
  • The high-tech large warships are minimal and they are always monitored by opponents, and become primary targets when conflicts occur. The improvement in reducing susceptibility has significant importance because it is difficult for a ship to maintain mission capability and functionality once it is damaged. Ordinary decoys are effective only under the premise that the ship has already been exposed. Traditionally, for naval vessels, techniques related to the radar have been used in military stealth techniques to ensure confidentiality. The corner reflector, on the other hand, can produce rather large radar cross sections. Continued use of deceptive systems such as chaff during operations will help to improve survivability of naval ships. From this viewpoint, corner reflector was considered for making radar countermeasures and deception technology. This paper reviews the current status of corner reflector basis decoys and the technical feasibility of corner reflectors for developing structural decoys.

폭발강화격벽의 초기구조설계에 관한 연구 (제1보 : 간이 구조 해석/설계 기법 정식화) (Preliminary Structural Design of Blast Hardened Bulkhead (The 1st Report : Formulation of Simplified Structural Analysis/Design Method))

  • 노인식;박만재;조윤식
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.371-378
    • /
    • 2018
  • Internal detonation of a warhead inside a compartment of naval vessel can result in serious blast damages including plastic deformation and rupture of the structural members especially bulkhead due to the huge explosive impact pressure, fragments and high temperature flame. To secure watertight integrity and to prevent the domino-type flooding of neighbouring compartments caused by the rupture of bulkheads, it is necessary to develop the structural design technology of Blast Hardened Bulkheads(BHB) which can resist the blast impact pressure of threatening weapons to increase the survivability of naval vessels. This study dealt with the simplified structural response analysis of BHB under impact pressure of confined explosion and aimed to develop the efficient and rational design method of BHB and joint structures which can be applied at initial design stage. The present 1st report dealt with the phenomena of explosive detonation surveying the preceding experimental/theoretical research and the characteristics of time history of blast pressure including the peak value and duration time were examined. And to predict the large plastic deformation behaviors of BHB by the huge blast pressure reasonably, the plastic hinge method including the membrane effects was formulated. It was applied to the simplified structural design equations. The following report will deal with the application and adjustment process of the structural scantling equations to the actual BHB design and verification of validity of them.

한국해군 함정 통신장비 안테나의 통합마스트 탑재 가능성 (Feasibility of Communication Antennas Installation on Integrated Mast for ROK Navy)

  • 이종학;오성원;라영은;이건민;이종성;박태용
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.638-645
    • /
    • 2020
  • 마스트는 해군 함정에서 가장 높은 구조물로, 장거리 통신 및 레이더 가시거리(LOS, Line Of Sight) 확보를 위해 각종 통신기와 레이더 안테나들이 설치된다. 통합마스트는 레이더 반사 면적(RCS, Radar Cross Section)을 줄일 수 있어 함 생존성 향상을 기대할 수 있기 때문에 최근 미국, 유럽 등 해외에서 건조되는 함정에 적용되고 있는 비율이 늘고 있다. 본 논문에서는 해외에서 통합마스트를 적용할 경우 통신 안테나의 통합 현황 및 안테나 개발 사례를 분석하였다. 그리고 한국 해군의 운용 통신망을 분석하여 통합마스트를 적용할 경우 통신기 안테나 형태에 따른 함정 RCS 영향, 다양한 대역의 통신기 안테나의 통합마스트 통합 가능성과 고려사항을 제시하였다.

Time domain broadband noise predictions for non-cavitating marine propellers with wall pressure spectrum models

  • Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Park, Il-Ryong;Seol, Han-Shin;Kim, Min-Jae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.75-85
    • /
    • 2021
  • The broadband noise can be dominant or important for total characteristics for marine propeller noise representing the minimum base of self-noise. Accurate prediction of such noise is crucial for survivability of underwater military vessels. While the FW-H Formulation 1B can be used to predict broadband trailing edge noise, the method required experiment measurements of surface pressure correlations, showing its limitations in generality. Therefore, in this study, the methods are developed to utilize wall pressure spectrum models to overcome those limitations. Chase model is adopted to represent surface pressure along with the developed formulations to reproduce pressure statistics. Newly developed method is validated with the experiments of airfoils at different velocities. Thereafter, with its feasibility and generality, the procedure incorporating computational fluid dynamics is established and performed for a propeller behind submarine hull. The results are compared with the experiments conducted at Large Cavitation Tunnel, thus showing its usability and robustness.

무폭약 시험 장치 개발을 위한 수중폭발 특성에 대한 연구 (A Study on the Characteristics of Underwater Explosion for the Development of a Non-Explosive Test System)

  • 이한솔;박규동;나양섭;이승규;박경훈;정현
    • 대한조선학회논문집
    • /
    • 제57권6호
    • /
    • pp.322-330
    • /
    • 2020
  • This study deals with underwater explosion (UNDEX) characteristics of various non-explosive underwater shock sources for the development of non-explosive underwater shock testing devices. UNDEX can neutralize ships' structure and the equipment onboard causing serious damage to combat and survivability. The shock proof performance of naval ships has been for a long time studied through simulations, but full-scale Live Fire Test and Evaluation (LFT&E) using real explosives have been limited due to the high risk and cost. For this reason, many researches have been tried to develop full scale ship shock tests without using actual explosives. In this study, experiments were conducted to find the characteristics of the underwater shock waves from actual explosive and non-explosive shock sources such as the airbag inflators and Vaporizing Foil Actuator (VFA). In order to derive the empirical equation for the maximum pressure value of the underwater shock wave generated by the non-explosive impact source, repeated experiments were conducted according to the number and distance. In addition, a Shock Response Spectrum (SRS) technique, which is a frequency-based function, was used to compare the response of floating bodies generated by underwater shock waves from each explosion source. In order to compare the magnitude of the underwater shock waves generated by each explosion source, Keel Shock Factor (KSF), which is a measure for estimating the amount of shock experienced by a naval ship from an underwater explosionan, was used.

Test and estimation of ballistic armor performance for recent naval ship structural materials

  • Shin, Yun-ho;Chung, Jung-hoon;Kim, Jong-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권6호
    • /
    • pp.762-781
    • /
    • 2018
  • This paper presents the ballistic armor performance examination and thickness estimation for the latest naval ship structure materials in the Republic of Korea. Up to date, research regarding methods of ballistic experiments establishing database on the latest hull structure materials as well as a precise method of estimating required thickness of armor against specific projectiles have been rarely researched. In order to build a database and estimate proper thicknesses of structure materials, this study used four structure materials that have been widely applied in naval ships such as AH36 steel, AL5083, AL5086, and Fiber Reinforced Plastics (FRP). A $7.62{\times}39mm$ mild steel core bullet normally fired by AK-47 gun was considered as a threat due to its representativeness. Tate and Alekseevskii's penetration algorithm was also used to calculate a correction factor (${\alpha}$) and then estimate the armor thickness of naval ship hull structure materials with a given impact velocity. Through live fire experiments, the proposed method performance difference was measured to be 0.6% in AH36, 0.4% in AL5083, 0.0% in AL5086, and 8.0% in FRP compared with the experiment results.

함정적외선신호 관리를 위한 확률론적 방법의 가능성 연구 (A Feasibility Study on the Probabilistic Method for the Naval Ship Infra-red Signature Management)

  • 박현정;강대수;조용진
    • 대한조선학회논문집
    • /
    • 제56권5호
    • /
    • pp.383-388
    • /
    • 2019
  • It is essential to reduce the Infra-red signature for increasing ship's survivability in ship design stage. However the ship's IR signature is quite sensitive to the maritime and atmosphere. Therefore, it is very important to select the marine meteorological data to be applied to the signature analysis. In this study, we selected the three meteorological sample sets from the population of the Korea Meteorological Administration's marine environment data in 2017. These samples were selected through the two-dimensional stratified sampling method, taking into account the geopolitical threats of the Korean peninsula and the effective area of the buoy. These sample sets were applied to three naval ships classified by their tonnage, and then the IR signature analysis was performed to derive the Contrast Radiant Intensity (CRI) values. Based on the CRI values, the validity of each sample set was determined by comparing Cumulative Distribution Function (CDF), and Probability Density Function (PDF). Also, we checked the degree of scattering in each sample set and determined the efficiency of analysis time and cost according to marine meteorological sample sets to confirm the possibility of a probabilistic method. Through this process, we selected the standard for optimization of marine meteorological sample for ship IR signature analysis. Based on this optimization sample, by applying probabilistic method to the management of IR signature for naval ships, the robust design is possible.

폭발강화격벽의 초기구조설계에 관한 연구 (제2보 : 커튼판 방식 폭발강화격벽의 설계식 개발) (Preliminary Structural Design of Blast Hardened Bulkhead (The 2nd Report : Scantling Formula for Curtain Plate Type Blast Hardened Bulkhead))

  • 노인식;박만재;조윤식
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.379-384
    • /
    • 2018
  • This study showed the development process of structural design method of BHB(Blast Hardened Bulkhead) which are applicable in preliminary design stage. In the previous 1st report, the simplified structural scantling equations of BHB were formulated theoretically using the modified plastic hinge method supplemented by considering the membrane effects due to large plastic deformation. And the scantling methodology of plate thickness and section area of stiffeners of the curtain plate type BHB was dealt with. In the present 2nd report, derivation process of the correction factors which can adjust the developed scantling equations considering the uncertainties contained in the design parameters was introduced. Considering the actual BHB structures of 3 warship, the correction factors for the developed scantling equations for curtain plate type BHB were derived. Finally the applicability, validity of them and the strategy of future improvement were considered.

함대공 방어체계 복합자산 운용개념 연구 (A Study on Operation Concept of Naval Surface to Air Defense System with Complex Assets)

  • 김태구;나웅재;양서연;박여진;심동혁;류다빈;윤나혜;박인철;김래은
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.190-198
    • /
    • 2023
  • The purpose of this study was to propose an operational concept for a ship in a fleet equipped with an interceptor missile system, a naval surface to air defense system, and to develop a simulation program that reflects it. The results of the defense activities of other ships in the fleet can be reflected by receiving information about the status of the enemy missiles. The allocation of defensive assets is based on the survival probability of the ship, not on the destruction of enemy attacks, which can be obtained as the product of the expected survival probability for each enemy missile. In addition, the concept of predicted survivability was introduced to assess the loss of future defense opportunities that would result from assigning a new command. A simulation program was also developed as a tool for realizing the proposed concept of operations, which generated cases.

경중량 수직형 충격 시험 장비의 선형 동역학 모델 수립을 통한 충격 시험 설계 기법에 관한 연구 (A Study on Shock Test Design Method Using Linear Dynamic Model of Light Weight Vertical Shock Test Machine)

  • 김준혁;오부진;임담혁
    • 한국군사과학기술학회지
    • /
    • 제24권1호
    • /
    • pp.70-78
    • /
    • 2021
  • Naval surface ships and submarines could be exposed to non-contact underwater explosion(UNDEX) environment. Equipment installed on the ships and submarines could be damaged by shock load generated by UNDEX environment. Therefore, shock survivability of equipment generally evaluated by shock tests. Ground based shock test machine such as Light weight shock test machine(LVSM) is developed to simulate shock load caused by UNDEX environment. In this study, linear dynamic model of LVSM is proposed and evaluated to improve shock test design procedure. Parameters of the model are decided by optimizing time domain response compared to zero payload experiment. Proposed model is verified by comparing simulation results and test results of maximum payload experiment. Finally, shock test design using the model is described for various test equipment weight.