• Title/Summary/Keyword: Surrogate gas

Search Result 33, Processing Time 0.025 seconds

A Numerical Study on Combustion Characteristics of HCCI Engine with Stratification Condition of EGR Exhaust Gases (EGR 배기가스의 성층화 조건에 따른 HCCI 엔진의 연소 특성에 관한 수치해석 연구)

  • Lee, Won-Jun;Lee, Seung-Ro;Lee, Chang-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.46-52
    • /
    • 2011
  • Homogeneous charge compression ignition (HCCI) is the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. However, HCCI engine's operation have an excessive rate of pressure rising during the combustion process. In this study, stratification condition of EGR exhaust gases was used to reduce the pressure rising during the combustion process in HCCI engine. Also, combustion characteristics and emissions characteristics were investigated using the detailed diesel surrogate reaction mechanism.

Light Tar Decomposition of Product Pyrolysis Gas from Sewage Sludge in a Gliding Arc Plasma Reformer

  • Lim, Mun-Sup;Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.89-94
    • /
    • 2012
  • Pyrolysis/gasification technology utilizes an energy conversion technique from various waste resources, such as biomass, solid waste, sewage sludge, and etc. to generating a syngas (synthesis gas). However, one of the major problems for the pyrolysis gasification is the presence of tar in the product gas. The tar produced might cause damages and operating problems on the facility. In this study, a gliding arc plasma reformer was developed to solve the previously acknowledged issues. An experiment was conducted using surrogate benzene and naphthalene, which are generated during the pyrolysis and/or gasification, as the representative tar substance. To identify the characteristics of the influential parameters of tar decomposition, tests were performed on the steam feed amount (steam/carbon ratio), input discharge power (specific energy input, SEI), total feed gas amount and the input tar concentration. In benzene, the optimal operating conditions of the gliding arc plasma 2 in steam to carbon (S/C) ratio, 0.98 $kWh/m^3$ in SEI, 14 L/min in total gas feed rate and 3.6% in benzene concentration. In naphthalene, 2.5 in S/C ratio, 1 $kWh/m^3$ in SEI, 18.4 L/min in total gas feed rate and 1% in naphthalene concentration. The benzene decomposition efficiency was 95%, and the energy efficiency was 120 g/kWh. The naphthalene decomposition efficiency was 79%, and the energy yield was 68 g/kWh.

Determination of Icing Inhibitors (Ethylene Glycol Monomethyl Ether and Diethylene Glycol Monomethyl Ether) in Ground Water by Gas Chromatography-Mass Spectrometry

  • Shin, Ho-Sang;Jung, Dong-Gyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.806-808
    • /
    • 2004
  • A gas chromatography/mass spectrometric assay method has been developed for the simultaneous determination of icing inhibitors, ethylene glycol monomethyl ether and diethylene glycol monomethyl ether in ground water contaminated with JP-8. Ethylene glycol monobutyl ether and ethylene glycol monoethyl ether were used as the internal standard and surrogate, respectively. 100 mL of ground water was extracted twice with 20 mL of methylene chloride. The extract was concentrated to dryness, dissolved with 100 ${\mu}$L of methanol and analyzed by GC-MS (SIM). The use of an Innowax column gave the peaks good chromatographic properties, and the extraction of these compounds from samples gave recoveries of about 50% with small variations. The method detection limits of the target compounds were in a range of 0.5-0.8 ng/mL in ground water.

Characteristics of Atmospheric Dry Deposition of Nitrogen-containing Compounds (대기 중 질소산화물의 건식침적 특성)

  • Yi, Seung-Muk;Han, Young-Ji;Cheong, Jang-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.775-784
    • /
    • 2000
  • Nitrate dry deposition fluxes were directly measured using knife-leading-edge surrogate surface (KSS) covered with greased strips and a water surface sampler (WSS). The average gaseous flux ($8.3mg/m^2/day$) was much higher than the average particulate one ($3.0mg/m^2/day$). The best fit gas phase mass transfer coefficient (MTC) of $HNO_3$ was obtained by linear regression analysis between measured gaseous flux containing nitrogen compounds and measured ambient $HNO_3$ concentration. The result showed that the MTCs of $HNO_3$ were approximately two times higher than those of $SO_2$. Especially, during the ozone action day, measured gaseous fluxes containing nitrogen compounds were much higher than those ones calculated as the product of measured ambient $HNO_3$ concentration and gas phase MTC of $HNO_3$, which is calculated from MTC of $SO_2$ using Graham's diffusion law. This result indicated that other nitrogen compounds except $HNO_3$ contributed to gaseous flux containing nitrogen compounds into the water surface sampler. The theoretical calculations suggest the contributions of nitrous acid ($HNO_2$) and PAN to the gaseous dry deposition flux of nitrogen containing compounds to the WSS.

  • PDF

Modeling of Non-Equilibrium Kinetics of Fuel Rich Combustion in Gas Generator (농후 연소 가스발생기의 비평형 연소 화학반응 모델링)

  • 유정민;이창진
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.89-96
    • /
    • 2006
  • The combustion temperature in gas generator should be kept below around 1,000K to avoid any possible thermal damages to turbine blade by adopting either fuel rich or oxidizer rich combustion. Thus, non-equilibrium chemical reaction dominates in the gas generator. Meanwhile, Kerosene is a compounded fuel mixed with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focus to model the non-equilibrium chemical reaction of kerosene/LOX with detailed kinetics developed by Dagaut using PSR(Perfectly stirred reactor) assumption. Also, droplet evaporation time is taken into account by calculating for the residence time of droplet and by decoupling reaction temperature from the reactor temperature. In Dagaut’s surrogate model for kerosene, chemical kinetics of kerosene consists of 1592 reaction steps with 207 chemical species. The comparison of calculation results with experimental data could provide very reliable and accurate numbers in the prediction of combustion gas temperature, species fraction and other gas properties.

Hydrocarbon Speciation in Low Temperature Diesel Combustion (저온 디젤 연소에서 발생하는 탄화수소 종 분석)

  • Han, Man-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.417-422
    • /
    • 2010
  • Low temperature diesel combustion was achieved via a combination of late injection timing ($8.5^{\circ}$ CA BTDC to $0.5^{\circ}$ CA BTDC) and heavy exhaust gas recirculation (37% to 48%) with ultra low sulfur Swedish diesel fuel in a 1.7L common rail direct injection diesel engine. When injection timing is retarded at a certain exhaust gas recirculation rate, the particulate matter and nitrogen oxides decease simultaneously, while the hydrocarbon and carbon monoxide increase. Hydrocarbon speciation by gas chromatography using a flame ionization detector reveals that the ratio of partially burned hydrocarbon, i.e., mainly alkenes increase as the injection timing is retarded and exhaust gas recirculation is increased. The two most abundant hydrocarbon species are ethene which is a representative species of partially burned hydrocarbons, and n-undecane, which is a representative species of unburned hydrocarbons. They may be used as surrogate hydrocarbon species for performing a bench flow reactor test for catalyst development.

Kinetic Study on the Mixing Region of a Hydrocarbon Reformer (개질기 혼합영역에서 탄화수소 연료의 반응 특성에 대한 연구)

  • Kim, Sun-Young;Bae, Joong-Myeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.357-362
    • /
    • 2011
  • Complete mixture preparation of reactants prior to catalytic reforming is an enormously important step for successful operation of a fuel reformer. Incomplete mixing between fuel and reforming agents such as air and steam can cause temperature overshoot and deposit formation which can lead the failure of operation. For that purpose it is required to apply computational models describing coupled kinetics and transport phenomena in the mixing region, which are computationally expensive. Therefore, it is advantageous to analyze the gas-phase reaction kinetics prior to application of the coupled model. This study suggests one of the important design constraints, the required residence time in the mixing chamber to avoid substantial gas-phase reactions which can lead serious deposit formation on the downstream catalyst. The reactivity of various gaseous and liquid fuels were compared, then liquid fuels are far more reactive than gaseous fuels. n-Octane was used as a surrogate among the various hydrocarbons, which is one of the traditional liquid fuel surrogates. The conversion was slighted effected by reactants composition described by O/C and S/C. Finally, threshold residence times in the mixing region of a hydrocarbon reformer were studied and the mixing chamber is required to be designed to make complete mixture of reactants by tens of milliseconds at the temperature lower than $400^{\circ}C$.

Determination of trace icing Inhibitors (ether type) in free-floating fuels by gas chromatography-mass spectrometry

  • Shin, Ho-Sang;Ahn, Hye-Sil;Jung, Dong-Gyun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.196-200
    • /
    • 2003
  • A gas chromatography/mass spectrometric assay method was developed for the simultaneous determination of ethylene glycol monomethyl ether (EGME) and diethylene glycol monomethyl ether (DEGME) in spilled aviation fuels. Ethylene glycol monobutyl ether (EGBE) and ethylene glycol monoethyl ether (EGEE) were used as internal standard and surrogate, respectively. The sample preparation consists of back-extraction with 7 mL of methylene chloride after extraction of 50 mL of fuel with 2 mL of water. The extract was concentrated to dryness and dissolved with 100L of methanol and analyzed by CC-MS (SIM). The peaks had good chromatographic properties by using semi-polar column and the extraction of these compounds from fuel also gave high recoveries of 75 and 85 % with small variations for EGME and DEGME, respectively. Method detection limits were 1.3 ng/mL for EGME and 1.0 ng/mL for DEGME in spilled fuel. The method may be useful for fuel-type differentiation between kerosene and JP-8, which may originate from the storage tank.

  • PDF

Study of Soot Formation in Fuel Rich Combustion (농후 연소 추진제의 Soot 생성 특성에 관한 연구)

  • Yu, Jung-Min;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.143-147
    • /
    • 2007
  • Kerosene and diesel are compounded fuels with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focuses on the prediction of the non-equilibrium reaction of fuel-rich combustion with detailed kinetics developed by Dagaut using PSR(perfectly stirred reactor) assumption. In Dagaut's surrogate model for kerosene and diesel, chemical kinetics consists of 2352 reaction steps with 298 chemical species. Also, Frenklach's soot model was implemented along with detailed kinetics to calculate the gas properties of fuel rich combustion efflux.

  • PDF

In-situ measurement of Ce concentration in high-temperature molten salts using acoustic-assisted laser-induced breakdown spectroscopy with gas protective layer

  • Yunu Lee;Seokjoo Yoon;Nayoung Kim;Dokyu Kang;Hyeongbin Kim;Wonseok Yang;Milos Burger;Igor Jovanovic;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4431-4440
    • /
    • 2022
  • An advanced nuclear reactor based on molten salts including a molten salt reactor and pyroprocessing needs a sensitive monitoring system suitable for operation in harsh environments with limited access. Multi-element detection is challenging with the conventional technologies that are compatible with the in-situ operation; hence laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential alternative. However, limited precision is a chronic problem with LIBS. We increased the precision of LIBS under high temperature by protecting optics using a gas protective layer and correcting for shotto-shot variance and lens-to-sample distance using a laser-induced acoustic signal. This study investigates cerium as a surrogate for uranium and corrosion products for simulating corrosive environments in LiCl-KCl. While the un-corrected limit of detection (LOD) range is 425-513 ppm, the acoustic-corrected LOD range is 360-397 ppm. The typical cerium concentrations in pyroprocessing are about two orders of magnitude higher than the LOD found in this study. A LIBS monitoring system that adopts these methods could have a significant impact on the ability to monitor and provide early detection of the transient behavior of salt composition in advanced molten salt-based nuclear reactors.