• 제목/요약/키워드: Surgery simulation

검색결과 276건 처리시간 0.027초

Computer-Assisted Virtual Simulation and Surgical Treatment for Facial Asymmetry Induced by Fibrous Dysplasia

  • Lee, Jung-woo
    • Journal of International Society for Simulation Surgery
    • /
    • 제3권1호
    • /
    • pp.33-35
    • /
    • 2016
  • Fibrous dysplasia(FD) is a disorder in which normal bone is replaced with pathologic tissue. When occurring in craniofacial regions, the zygomaticomaxillary complex is most commonly affected and this pathologic lesion results in facial asymmetry. and By using computer-assisted virtual simulation, precise maxillofacial contouring was achieved for harmonious facial morphology and the surgical procedure was simplified and the surgery brought satisfactory results in terms of both esthetics and functionality.

3 Dimensional Computer Simulated Cutting Guide for the Mandibuloplasty : A Preliminary Case Report

  • Choi, Jong-Woo;Jeong, Woo Shik;Oh, Tae Suk
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권2호
    • /
    • pp.80-82
    • /
    • 2015
  • The mandibuloplasty for the facial aesthetic reason has been the one of the most popular procedures in aesthetic facial bone surgery in East Asia. Most East Asian women prefer smaller-looking and smooth-shaped facial contour. Prominent mandible angle which are common in Asia would be the main problem for smooth facial contour. In addition, recently, the mandibular body and broad chin shape also are known to be remodeled in order to get the ideal smooth facial shape. However, mandibuloplasty is not that easy to cut because many patients has inward mandibular angle and the visual field in operation is limited. The aim of this trial is to try to provide the prefabricated cutting guide for the symmetric and appropriate mandibuloplasty with the surgeons. Preoperative computed tomography(CT) data were processed for the patient and computer simulation model was produced. Then, mandibuloplasty was done on the computer simulation screen. Based on this data, customized cutting guide was made. This prefabricated cutting guide was used in real mandibuloplasty bilaterally. Premade cutting guide for the mandibuloplasty based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the patients in near future.

Computer-assisted Virtual Surgery and Splint Fabrication for Paediatric Mandible Fracture

  • Lee, Jung-woo
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권2호
    • /
    • pp.87-89
    • /
    • 2015
  • Closed reduction using acrylic splints with circummandibular fixation has been known to be useful techniques in pediatric mandibular fractures. However, this technique has some shortcomings, including needs for impression taking or additional laboratory process, which can increase the exposure time of general anesthesia or make an additional sedation visit. Recently, the advancement of computer-aided maxillofacial surgery offers to clinicians to expansion of its application. This case report represents a technique of computer-assisted virtual reconstruction and computer-aided designed splint fabrication in a 2-year-old boy with mandibular body fracture.

Current status of simulation training in plastic surgery residency programs: A review

  • Thomson, Jennifer E.;Poudrier, Grace;Stranix, John T.;Motosko, Catherine C.;Hazen, Alexes
    • Archives of Plastic Surgery
    • /
    • 제45권5호
    • /
    • pp.395-402
    • /
    • 2018
  • Increased emphasis on competency-based learning modules and widespread departure from traditional models of Halstedian apprenticeship have made surgical simulation an increasingly appealing component of medical education. Surgical simulators are available in numerous modalities, including virtual, synthetic, animal, and non-living models. The ideal surgical simulator would facilitate the acquisition and refinement of surgical skills prior to clinical application, by mimicking the size, color, texture, recoil, and environment of the operating room. Simulation training has proven helpful for advancing specific surgical skills and techniques, aiding in early and late resident learning curves. In this review, the current applications and potential benefits of incorporating simulation-based surgical training into residency curriculum are explored in depth, specifically in the context of plastic surgery. Despite the prevalence of simulation-based training models, there is a paucity of research on integration into resident programs. Current curriculums emphasize the ability to identify anatomical landmarks and procedural steps through virtual simulation. Although transfer of these skills to the operating room is promising, careful attention must be paid to mastery versus memorization. In the authors' opinions, curriculums should involve step-wise employment of diverse models in different stages of training to assess milestones. To date, the simulation of tactile experience that is reminiscent of real-time clinical scenarios remains challenging, and a sophisticated model has yet to be established.

Computer Simulation Surgery for Mandibular Reconstruction Using a Fibular Osteotomy Guide

  • Jeong, Woo Shik;Choi, Jong Woo;Choi, Seung Ho
    • Archives of Plastic Surgery
    • /
    • 제41권5호
    • /
    • pp.584-587
    • /
    • 2014
  • In the present study, a fibular osteotomy guide based on a computer simulation was applied to a patient who had undergone mandibular segmental ostectomy due to oncological complications. This patient was a 68-year-old woman who presented to our department with a biopsy-proven squamous cell carcinoma on her left gingival area. This lesion had destroyed the cortical bony structure, and the patient showed attenuation of her soft tissue along the inferior alveolar nerve, indicating perineural spread of the tumor. Prior to surgery, a three-dimensional computed tomography scan of the facial and fibular bones was performed. We then created a virtual computer simulation of the mandibular segmental defect through which we segmented the fibular to reconstruct the proper angulation in the original mandible. Approximately 2-cm segments were created on the basis of this simulation and applied to the virtually simulated mandibular segmental defect. Thus, we obtained a virtual model of the ideal mandibular reconstruction for this patient with a fibular free flap. We could then use this computer simulation for the subsequent surgery and minimize the bony gaps between the multiple fibular bony segments.

Virtual Reality and 3D Printing for Craniopagus Surgery

  • Kim, Gayoung;Shim, Eungjune;Mohammed, Hussein;Kim, Youngjun;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • 제4권1호
    • /
    • pp.9-12
    • /
    • 2017
  • Purpose Surgery for separating craniopagus twins involves many critical issues owing to complex anatomical features. We demonstrate a 3D printed model and virtual reality (VR) technologies that could provide valuable benefits for surgical planning and simulation, which would improve the visualization and perception during craniopagus surgery. Material & Methods We printed a 3D model extracted from CT images of craniopagus patients using segmentation software developed in-house. Then, we imported the 3D model to create the VR environment using 3D simulation software (Unity, Unity Technologies, CA). We utilized the HTC Vive (HTC & Valve Corp) head-mount-display for the VR simulation. Results We obtained the 3D printed model of craniopagus patients and imported the model to a VR environment. Manipulating the model in VR was possible, and the 3D model in the VR environment enhanced the application of user-friendly 3D modeling in surgery for craniopagus twins. Conclusion The use of the 3D printed model and VR has helped understand complicated anatomical structures of craniopagus patients and has made communicating with other medical surgeons in the field much easier. Further, interacting with the 3D model is possible in VR, which enhances the understanding of the craniopagus surgery as well as the success rate of separation surgery while providing useful information on diagnosing and surgery planning.

악안면 골신장술의 치료계획을 위한 3차원 시뮬레이션 프로토콜의 개발 (Development of Computer Assisted 3-D Simulation and Prediction Surgery in Craniofacial Distraction Osteogenesis)

  • 팽준영;이지호;이종호;백승학;김명진
    • 대한구순구개열학회지
    • /
    • 제6권2호
    • /
    • pp.91-105
    • /
    • 2003
  • There are significant limitations in the precision of mandibular distraction in setting a desired occlusal and facial esthetic outcome. The purpose of this study is to present the simulation method for the distraction osteogenesis treatment planning. 3-D surgery simulation software programs V-works and V-Surgery(Cybermed, Seoul, Korea) were used from the 3D CT data in addition to the conventional data facial photography, panorama and cephalogram, dental cast model. We have utilized already for the various surgical procedures to get information preoperatively for the maxillofacial surgery like cancer localization and reconstructive surgery, orthognathic surgery and implant surgery in the department of Oral and Maxillofacial surgery, Seoul National University Hospital. On the software, bone cutting can be done at any place and any direction. Separated bone segment can be mobilized in all 3 dimensional direction. After the 3D simulation on the software program, mock surgery on the RP model can be performed. This planning method was applied to two hemifacial microsomia patients. With this protocol, we could simulate the movement of bony segment after maxillofacial distraction osteogenesis

  • PDF

Low-cost model for pancreatojejunostomy simulation in minimally invasive pancreatoduodenectomy

  • Hiang Jin Tan;Adrian Kah Heng Chiow;Lip Seng Lee;Suyue Liao;Ying Feng;Nita Thiruchelvam
    • 한국간담췌외과학회지
    • /
    • 제27권4호
    • /
    • pp.428-432
    • /
    • 2023
  • Minimally invasive pancreatoduodenectomy (MIS PD) is a well reported technique with several advantages over conventional open pancreatoduodenectomy. In comparison to distal pancreatectomy, the adoption of MIS PD has been slow due to the technical challenges involved, particularly in the reconstruction phase of the pancreatojejunostomy (PJ) anastomosis. Hence, we introduce a lowcost model for PJ anastomosis simulation in MIS PD. We fashioned a model of a cut pancreas and limb of jejunum using economical and easily accessible materials comprising felt fabric and the modelling compound, Play-Doh. Surgeons can practice MIS PJ suturing using this model to help mount their individual learning curve for PJ creation. Our video demonstrates that this model can be utilized in simulation practice mimicking steps during live surgery. Our model is a cost-effective and easily replicable tool for surgeons looking to simulate MIS PJ creation in preparation for MIS PD.

Fibula Free Flap for Mandibular Reconstruction using Simulation Surgery in Bisphosphonate related Osteonecrosis of the Jaw

  • Kim, Hong-Joon;Hwang, Jong-Hyun;Ahn, Kang-Min
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2015
  • Purpose Bisphophonate-related osteonecrosis of the jaw (BRONJ) is an emerging problem. Extensive osteonecrosis of the jaw needs free flap reconstruction. Free fibular flap is the most useful flap for maxilla-mandibular hard and soft tissue reconstruction. The advantages of fibular free flap are simultaneous soft and hard tissue reconstruction and placing implant in reconstructed mandible and maxilla. In this study, four consecutive BRONJ patients who underwent fibula free flap reconstruction using simulation surgery were reviewed. Materials and Methods Four BRONJ patients who underwent free fibula reconstruction between May 2006 and September 2014 were included in this study. Male to female ratio was 1:3 and average age was 67.3 years old (62-70). All patients need mandibular bone reconstruction. Three patients suffered from osteoporosis and one male patient had multiple myeloma. Postoperative flap survival, functional reconstruction, esthetic results, food taking were evaluated. Results Three osseous flaps and one osteocutaneous flap were used. All the fibular flaps were survived and patients were recovered without complications. Oro-cutaneous fistula was resolved after operation. All patients were satisfied with the esthetic results. Patients reported improved solid food intake after operation with partial denture. One fully edentulous patient had semi-fluid diet after operation. Conclusion Treatment of the BRONJ is difficult due to lack of standard protocol. Fibular free flap using simulation surgery is the workhorse flap for mandibular hard and soft tissue reconstruction, especially in stage III BRONJ patient. In this study, functional and esthetic results were successful in all patients. Normal diet was possible with partial dentures.

Application of 3D Simulation Surgery to Orbital Wall Fracture : A preliminary Case Study

  • Choi, Jong-Woo
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권1호
    • /
    • pp.16-18
    • /
    • 2014
  • The orbit has a very special anatomical structure. The complex anatomical structure should be restored when we encounter the patient with orbital wall fracture. Unless these specific anatomy were reconstructed well, the patient should suffer from various complications such enophthalmos, diplopia or orbital deformity. In addition, because the patient has a his own specific orbital shape, individualized approach will be necessary. The aim of this trial is to try to restore the original orbit anatomy as possible based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. In order to restore the missing skipped images between the cuts of CT data because of the thinness of the orbital walls, we manipulated the DICOM data for imaging the original orbital contour using the preoperatively manufactured mirror-image of the RP model. And we fabricated Titanium-Medpor to reconstruct three-dimensional orbital structure intraoperatively. This prefabricated Titanium-Medpor was then inserted onto the defected orbital wall and fixed. Three dimensional approach based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the traumatic patients in near future.