• Title/Summary/Keyword: Surge protection device

Search Result 72, Processing Time 0.025 seconds

Characteristics of a Home Panel Board with Surge Protection Device (서-지차단장치 내장형 단위세대 분전반의 특성)

  • 이종혁;송재용;이종호;홍경민;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.480-483
    • /
    • 2000
  • We developed a home electric panel board with surge protection device to protect home electric appliances from transient overvoltages and electromagnetic(EM) noise. In this paper, electrical characteristics of the home electric panel board are described. From the performance test using a combination surge generator standardized in IEC 610004-5, it is confirmed that the proposed home panel board has an excellent surge protection performance. Also, EM noise reduction characteristics of the panel board in ranges from 150 kHz to 30 MHz is estimated by using a network analyser, and the results showed that the panel board has an over 20 45 noise reduction performance.

  • PDF

Discussion On The Protective Effect of Lightning Surge based on The Surge Protective Devices for Low Voltage (저압 피뢰기 적용시 뇌서지 억제 효과 검토)

  • Lee, Suck-Woo;Whang, Kyu-Hyun;Seo, Ho-Joon;Rhie, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.40-42
    • /
    • 2004
  • Electronic equipments made from electrical circuits with small-sized semiconductor are very weak against lightning surge. So, electronic equipments is protected by SPD(surge protective devices) such as Zno varistor. The SPD protect electronic circuit in electronic equipments and AC power lines from the lightning surge. Therefore to achieve effective method of surge protection, there are needs for correlation between lightning surge protective effect and installation method of surge protective device. Therefore this paper describes as a result of experiments for correlation between lightning surge protective effect and installation method of surge protective device.

  • PDF

Influences of the Length of Connecting Leads on the Energy Coordination in Coordinated SPD Systems (협조된 SPD시스템에서 접속선의 길이가 에너지협조에 미치는 영향)

  • Lee, Bok-Hee;Shin, Hee-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.91-98
    • /
    • 2014
  • For the purpose of designing and applying the optimum surge protection scheme, multi-stage coordinated surge protective device(SPD) system is suitable to successfully fulfill its tasks; first, to divert a large amount of the transient energy, second, to clamp the overvoltage to the level below the withstand impulse voltage of the equipment to be protected. The length of SPD connecting leads shall be as short as possible. Long connecting leads will degrade the protection effect of SPDs. In this paper, the influences of the length of connecting leads on the energy sharing in a coordinated SPD system were investigated experimentally, and the simulation of determining the energy sharing and protection voltage level of each SPD depending on the length of connecting leads was carried out by using P-spice program. It was confirmed that the protection voltage level and energy sharing in coordinated SPD systems are strongly influenced by the length of connecting leads.

Failure Rate Estimation of MOV for Condition Monitoring of Surge Protective Devices (서지보호기의 상태 감시를 위한 MOV의 고장률 예측)

  • Kim, Dong Jin;Kim, Young Sun;Park, Jae Jun;Lee, Ki Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1302-1307
    • /
    • 2013
  • MOV(Metal Oxide Varistor) is the most important part of SPD(Surge Protective Device) which can protect electric facilities from an impulse current such as a lightning. So far, the fault of MOVs have decided only by surge count without considering magnitude of surge current and an amount of input energy. This paper proposed the fault prediction algorithm for the MOV using look up table made by surge count and input current data which have non-linear characteristics for input current and are estimated by high voltage experimental results. Proposed algorithm was proved by experiment on verification at a high voltage laboratory.

The Ligthning Surge Protective Devices with Combination of Varistor and LC Filter (바리스터와 LC필터를 조합한 뇌써-지보호장치)

  • Kim, J.H.;Lee, K.O.;Lee, B.H.;Lee, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1873-1875
    • /
    • 1996
  • This paper deals with the lightning surge protective devices with combination of varistor and LC filter. UP to now, the varistor alone were used as overvoltage protection devices fer the AC power mains. In this work, in order to improve the cutoff performance of surge protective device, the hybrid circuit surge protective device for an AC single phase mains was designed and investigated. The first stage of hybrid circuit is to remove most of any large surge energy and protect the second stage components. The purpose of the second is to protect the load and increase the cutoff capacity of surge protective devices. Also LC filter attenuates the remnant that travels downstream from the first stage component and the high frequency noises. As a consequence, it was found that the proposed hybrid surge protective device for AC power mains has a variety of advantages such as low and tight clamping voltage, high frequency noise reduction and large cutoff capacity.

  • PDF

Coordination between Voltage-Limiting Surge Protective Devices in Surge Currents Caused by Direct Lightning Flashes

  • Shin, Hee-Kyung;Lee, Jae-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.116-125
    • /
    • 2015
  • This paper presents experimental results obtained from actual installation conditions of surge protective devices (SPDs), with the aim of understanding the coordination of cascaded Class I and Class II SPDs. This paper also proposes effective methods for selecting and installing coordinating cascaded SPDs. The residual voltage of each SPD and the energy sharing of an upstream Class I tested SPD and a downstream Class II tested SPD were measured using a $10/350{\mu}s$ current wave. In coordinating a cascaded voltage-limiting SPD system, it was found that energy coordination can be achieved as long as the downstream SPD is a metal oxide varistor with a higher maximum continuous operating voltage than the upstream SPD; however, it is not the optimal condition for the voltage protection level. If the varistor voltage of the downstream SPD is equal to or lower than that of the upstream SPD, the precise voltage protection level is obtained. However, this may cause serious problems with regard to energy sharing. The coordination for energy sharing and voltage protection level is fairly achieved when the cascaded SPD system consists of two voltage-limiting SPDs separated by 3 m and with the same varistor voltage.

Optimal Design Method of 1-Port Surge Protective Device Based on Zinc Oxide Varistor (선화아연바리스터 기반의 1-포트 서지보호장치의 최적 설계 기법)

  • Jeong, Tae-Hoon;Kim, Young-Sung;Park, Geun-Bo;Lee, Seung-IL
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.93-102
    • /
    • 2018
  • This paper reports a Surge Protective Device (SPD) that is used to protect an automatic metering interface (AMI) power supplies of communication equipment on a low-voltage distribution system from a lightning current. The surge protective device (SPD) can be classified as one-port SPDs and two-port SPDs with decoupling elements depending on the connection type. The protection of internal systems against the lightning current may require a systematic approach consisting of coordinated SPDs. To deal with this, the definition of a lightning protection zone (LPZ) was studied and interpreted through a theoretical review. Because the lightning current resulting from a lightning surge is considerably high, there is limited protection from one SPD; therefore, coordinated cascaded MOV-based SPDs are installed to solve this problem. Regarding the power grid mentioned in this paper, a class II SPD for the low-voltage distribution system installed on the border of LPZ1 and LPZ2, which establish a protection coordination with the Arrester (LA, SA) that corresponds to the LPZO installed on the MOF stage connected to one system were designed to protect various communication (control) equipment, including the automatic meter reading system inside the branch-type electric supply panel of a building, not the incoming side of one system. In addition, performance-related tests were done by a comparison with the existing method through testing, and the optimal design was achieved for the 1-port SPD that uses a series connection and can bleed load current without any decoupling element.

A Study on the Surge Protection Device for Computer Networks by International Standards (국제규격 대응 컴퓨터 네트워크용 서지방호장치 개발에 관한 연구)

  • Park, Dae-Won;Seo, Hwang-Dong;Song, Jae-Yong;Han, Joo-Sup;Kil, Gyung-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.277-280
    • /
    • 2005
  • This paper dealt with the development of a surge protection device (SPD) that can protect high speed computer network devices from overvoltages caused by switching operations or lightning surges. The designed SPD is a form of hybrid circuit which is composed of a gas tube having large current diverting capability, high response bi-directional avalanche diodes, and fast recovery diodes to reduce insertion loss on high frequency domain. Surge protection and signal transmission characteristics of the fabricated SPD was tested according to the international standards, IEC 61000-4-5 and IEC 61643-21. From the test results, the SPD is satisfied with the international standards and the high cut-off frequency was 204MHz. Also, the SPD showed a good performance without an insertion loss on a field test of 100Mbps class Local Area Network

  • PDF

Development of a Surge Protective Device for Signal Lines on Shipboard (선박 신호회로용 서지방호장치의 개발)

  • Seo, Hwang-Dong;Song, Jae-Yong;Han, Ju-Seop;Kim, Yoon-Sik;Kil, Gyung-Suk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1161-1165
    • /
    • 2005
  • Due to the miniaturization of electrical components and assembles on signal circuits, transient overvoltages caused by switching operation or lightning surges have become more interesting concern to the field of electrical engineering. In this paper, the development of surge protective devices(SPDs) that can protect sensitive signal device on shipboard from overvoltages are described. Two kinds of SPDs are designed and tested by using a combination surge generator which can produce the standard impulse current of 8/20${\mu}s$ 2.1kA according to the IEC 61000-4-5 standard. From the simulation and experimental results, it is confirmed that the proposed SPDs have an enough protection performance with a low insertion loss and a low clamping voltage.

  • PDF

Protection Coordination Associated with Connection Location of Residual Current Devices and Surge Protective Devices (RCD와 SPD의 접속 위치에 따른 보호협조)

  • Lee, Bok-Hee;Park, Hee-Yeoul;Shin, Gun-Jin;Bae, Gwan-Young;Ryu, Chun-Hyoung;Lee, Kang-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.100-106
    • /
    • 2013
  • In this paper, in order to analyze lightning impulse response characteristics in combined installations of SPDs and RCDs, surge protection coordination between SPDs and RCDs are experimentally investigated by using the combination wave generator. Six different types of single-phase residual current operated circuit-breakers with integral overcurrent protection for household and similar uses(RCBOs) being present on the domestic market are tested according to KS C IEC 61009-1 standard. As a result, when a class I SPD is located on the source side of an RCBO, all kinds of specimens are able to provide the proper coordination between the SPD and RCBOs without nuisance tripping, unintended operation or damage due to test impulse currents. However, in the case that the class II SPD is located on the load side of RCBOs, a lot of L-N mode injected currents is split into the RCBO, and a few RCBOs are damaged. Coordination between SPDs and RCDs is not valid and a role of SPDs is of no use. When combining SPDs with RCDs, it is necessary to select SPDs and RCDs in consideration of the protection voltage level of metal oxide varistor embedded in RCDs.