• 제목/요약/키워드: Surge impedance

검색결과 70건 처리시간 0.029초

서지임피던스 측정기의 설계 및 제작 (Design and Fabrication of a Surge Impedance Meter)

  • 길경석;류길수;김일권;문병두;김황국;박찬용
    • 한국철도학회논문집
    • /
    • 제10권6호
    • /
    • pp.645-649
    • /
    • 2007
  • 접지시스템은 고장전류를 대지로 방출시켜 대지전위상승을 억제하는 역할을 한다. 본 논문에서는 넓은 주파수 범위에서 접지임피던스를 분석하기 위하여 서지임피던스측정기를 설계 제작하였다. 본 측정기는 서지발생회로, 고속 샘플/홀드회로 및 주변 전자회로로 구성되어 있으며, 서지발생치고는 상승시간 $50ns\sim500ns$ 범위에서 최대 5kV까지 발생시킬 수 있다. 제작한 서지임피던스 측정기는 심타접지극으로 구성된 접지계에서 실질적 평가가 수행되었다. 실험 결과로부터 접지계의 서지임피던스는 인가전압의 상승시간에 따라 증가하는 경향을 나타내므로, 접지임피던스는 여러가지 고속의 서지파형으로 평가되어야함을 확인하였다.

임펄스전류에 의한 매설지선의 과도임피던스특성에 대한 모의해석 (Simulated Analysis for the Transient Impedance Behaviors of Counterpoises Subjected to the Impulsive Currents)

  • 조정현;이복희
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1861-1868
    • /
    • 2009
  • A ground electrode subjected to lightning surge current shows the transient impedance behaviors. The ground electrode for protection against lightning should be evaluated in view of the transient grounding impedance and conventional grounding impedance, not ground resistance. The transient impedance characteristics of ground electrodes are influenced by the shape of ground electrode and the soil characteristics, as well as the waveform of lightning surge current. In order to propose a simulation method of analyzing the transient impedance characteristics of the grounding system in practical use, this paper suggests a theoretical analysis method of distributed parameter circuit model to simulate the transient impedance characteristics of counterpoise subjected to lightning surge current. EMTP and Matlab programs were employed to compute the transient grounding impedances of three counterpoises with different lengths. As a consequence, the simulated results using the proposed distributed parameter circuit model are in good agreement with the measured results.

커플링/디커플링 네트워크 내장 서지발생장치의 설계 및 제작 (Design and Fabrication of a Surge Generator with Coupling/Decoupling Networks)

  • 김남훈;강태호;신한신;길경석
    • 한국전기전자재료학회논문지
    • /
    • 제33권2호
    • /
    • pp.130-134
    • /
    • 2020
  • Metal oxide varistors (MOVs) protect circuits and devices from transient overvoltages in electric power systems. However, a MOV continuously deteriorates owing to manufacturing defects or repetitive protective operations from transient overvoltages. A deteriorated MOV may result in a short circuit or a line-ground accident. Previous studies focused on the analysis of deterioration mechanisms and condition diagnosis techniques for MOVs owing to their recent growth of use. An accelerated deterioration experiment under the same conditions in which a MOV operates is essential. In this study, we designed and fabricated a surge generator that can apply a surge current to a MOV connected to AC mains. The coupling network operates at a low impedance against the surge current from the surge generator and transfers the surge current to the MOV under test. It also acts as a high impedance against AC mains for the AC voltage not to be applied to the surge generator. The decoupling network operates at a high impedance against the surge current and blocks the surge current from AC mains. It also acts as a low impedance against AC mains for the AC voltage to be applied to the MOV under test. The prototype surge generator can apply the 8/20 us up to 15 kA on AC voltages in the approximate range of 110~450 V, and it fully operates on a LabVIEW-based program.

서지전류에 대한 과도접지임피던스의 특성 (Characteristics of Transient Grounding Impedance under Surge Currents)

  • 이덕희;박종순
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권11호
    • /
    • pp.717-723
    • /
    • 1999
  • The transient characteristics of grounding systems play a major role in the protection of power equipments, electronic circuits and info-communication facilities against surges which arise from lightning or ground faults. Electronic devices are very weak against lightning surges injected from grounding systems and can be damaged. The malfunction and damage of electronic circuits bring about bad operation performances, a lot of economical losses, and etc. Therefore, in order to obtain the effective protection measure of electronic devices from overvoltages and lightning surges, the analysis of the transient grounding impedances in essential. One of this work is to examine the transient behaviors of grounding impedances under steplike currents for various grounding systems. And the other of this work is to evaluate the transient behaviors of a grid with rods under impulse currents and to investigate the effect of grounding lead wire. Transient grounding impedances of a grid with rods under impulse current waves have been measured as a parameter of the length of the grounding leads. Z-t, Z-i and V-i curves of transient grounding impedance under impulse current waveforms have been measured and analyzed. It was found that the grounding impedance gives the inductive, resistive and capacitive aspects under steplike current. Transient grounding impedance characteristics were very different with shapes, geometries of ground electrodes. Also, they were dependent on the waveform and magnitude of impulse current.

  • PDF

조합형 써지전압.전류발생기의 제작과 특성 (Fabrication and Characteristics of the Combination Surge Generator)

  • 장석훈;이복희;길경석;이영근;이복규;옥영환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1876-1878
    • /
    • 1996
  • This paper describes the combination surge generator for applying performance tests of surge protective devices. The $8/20{\mu}s$ waveform applies to low impedance circuits and components and is commonly used to determine the characteristics of surge protective devices. And the $1.2/50{\mu}s$ waveform applies to high impedance circuits and components and is used for testing dielectric behavior. Therefore, the combination surge generator, which generates $1.2/50{\mu}s$ voltage waveform under open-circuit conditions and $8/20{\mu}s$ current waveform under short-circuit condition, was proposed. Also this generator can produce $10/1000{\mu}s$ as well as $0.5{\mu}s/100kHz$ ring waveform.

  • PDF

접지임피던스의 변동이 최소가 되는 동축형 탄소접지전극의 길이의 산정 (Determination of the Length of Coaxial Type Carbon Grounding Electrode to Minimize the Fluctuation of Grounding Impedance)

  • 이강수;김종호;이복희
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.164-170
    • /
    • 2010
  • For the surge currents like lightning or ground fault currents containing high frequency components which cause the electromagnetic interferences for the electronic devices and communication equipment, the grounding impedances give the significantly composite characteristics which are dependent on the frequency of surge currents. In this paper, the analytical model and method for determining the optimal length of the newly developed coaxial type carbon ground electrode which has a little fluctuation in grounding impedance with frequency. The length of minimizing the fluctuation of grounding impedance by changing frequency from 100[Hz] to 1[MHz] was determined, and the validity of this proposed method was confirmed by comparing with the simulated and measured data.

대형 봉상 접지전극의 접지임피던스와 주파수 응답특성 (Ground Impedance and Frequency Response Characteristics of Large-scale Ground Rods)

  • 이복희;엄주홍;김태두;정동철;길형준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1791-1793
    • /
    • 2003
  • In order to analyze the dynamic characteristics of ground impedance in large grounding system for lightning and surge protections, a novel method for measuring the ground impedance as a function of frequency was proposed. The experiments were carried out in the grounding system composed of ground rods and mesh grids. The test current was injected by the variable frequency inverter whose frequency is linearly controlled in the range of $5{\sim}500$kHz. The ground impedance and frequency response of the grounding system were mainly caused by the inductive current flowing through grounding conductors over the frequency of 2002. In the combined grounding system of rods and mesh grids, inductive component of ground impedance was significantly decreased. It was fumed out that the grounding system is effective for the surge protection.

  • PDF

해상 풍력발전단지에서 뇌격 시 서지어레스터 열화로 인한 연계 고장 분석 (A Study on the Consecutive Failure Due to Deterioration in Surge Arresters of the Offshore Wind Farm)

  • 김진혁;김규호;이재균;우정욱
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1265-1270
    • /
    • 2018
  • One of the ways to improve the stability of power facilities used in power systems is to use power surge arresters and to protect against transient overvoltages and surges in normal operation. Also it is important to reduce the impact of lightning strikes because lightning can create overvoltage in the grid of the wind turbine and affect power quality. So This paper analyzes the effects of overvoltage and adjacent turbines due to single strike and multi strike to ground impedance changes when the surge arrester is deteriorated in a wind power farm.

Electromagnetic Field Analysis on Surge Response of 500 kV EHV Single Circuit Transmission Tower in Lightning Protection System using Neural Networks

  • Jaipradidtham, Chamni
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1637-1640
    • /
    • 2005
  • This paper presents a technique for electromagnetic field analysis on surge response due to Mid-span back-flashovers effects in lightning protection system of 500 kV EHV single circuit transmission tower by the neural networks method. These analyses are based on modeling lightning return stroke as well as on coupling the electromagnetic fields of the stroke channel to the line. The ground conductivity influences both the electric field as well as the coupling mechanism and hence the magnitude and wave shape of the induced voltage. The technique can be used to analyzed the corona voltage effect, the effective of stroke to the span tower, the surge impedance of transmission lines. The maximum voltage from flashovers effects in the lines. The model is compatible with general electromagnetic transients programs such as the ATP-EMTP. The simulation results show that this study analyses for time-domain with those produced by a cascade multi-section model, the surge impedance of a full-sized tower hit directly by a lightning stroke is discussed.

  • PDF

무선중계소 접지계의 과도특성 해석 (An Analysis of Transient Characteristics on Grounding Systems in the Radio Relay Station)

  • Wang Kim
    • 전자공학회논문지A
    • /
    • 제30A권9호
    • /
    • pp.1-5
    • /
    • 1993
  • The surge impedance of grounding systems must be accurately computed for a safe grounding design. Specifically, the case of radio relay station in a mountaintop region is required special design method using transient analyses. To approach these design objectives, this paper presents an algorithm to compute the surge impedance of two or more grounding systems using the Laplace Transform technique and deals with the analysis of the transient characteristics on grounding systems. Also, simulation results are compared with the measured data to prove the validity of the algorithm.

  • PDF